This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

161969-Thumbnail Image.png
Description
This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum

This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum to fall) and a right half plane (RHP, non-minimum phase) zero (associated with the cart displacement x). For such a system, the zero is typically close to (and smaller) than the instability. As such, a classical PK control structure would result in very poor sensitivity properties.It is therefore common to use a hierarchical inner-outer loop structure. As such, this thesis examines how such a structure can be used to improve sensitivity properties beyond a classic PK structure and systematically tradeoff sensitivity properties at the plant input/output. While the instability requires a minimum bandwidth at the plant input, the RHP zero imposes a maximum bandwidth on the cart displacement x. Three CIPs are examined – one with a long, short and an intermediately sized pendulum. We show that while the short pendulum system is the most unstable and requires the largest bandwidth at the plant input for stabilization (hardest to control), it also has the largest RHP zero. Consequently, it will permit the largest cart displacement x-bandwidth, and hence, one can argue that the short pendulum system is easiest to control. Similarly, the long pendulum system is the least unstable and requires smallest bandwidth at the plant input for stabilization (easiest to control). However, because this system also possesses the smallest RHP zero it will permit the smallest cart displacement x-bandwidth, and hence, one can argue that the long pendulum system is the hardest to control. Analogous “intermediate conclusions” can be drawn for the system with the “intermediately sized” pendulum. A set of simple academic examples (growing in plant and controller complexity) are introduced to illustrate basic tradeoffs and guide the presentation of the trade studies.
ContributorsSarkar, Soham (Author) / Rodriguez, Armando (Thesis advisor) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021