This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 12
Filtering by

Clear all filters

156788-Thumbnail Image.png
Description
Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in

Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in aerospace structures that require high specific strength and fatigue resistance. However, studying the fundamental crack growth behavior at the micro- and macroscale as a function of loading history is essential to accurately predict the residual fatigue life of components and achieve damage tolerant designs. The issue of mechanical fatigue can be tackled by developing reliable in-situ damage quantification methodologies and by comprehensively understanding fatigue damage mechanisms under a variety of complex loading conditions. Although a multitude of uniaxial fatigue loading studies have been conducted on light-weight metallic materials and composites, many service failures occur from components being subjected to variable amplitude, mixed-mode multiaxial fatigue loadings. In this research, a systematic approach is undertaken to address the issue of fatigue damage evolution in aerospace materials by:

(i) Comprehensive investigation of micro- and macroscale crack growth behavior in aerospace grade Al 7075 T651 alloy under complex biaxial fatigue loading conditions. The effects of variable amplitude biaxial loading on crack growth characteristics such as crack acceleration and retardation were studied in detail by exclusively analyzing the influence of individual mode-I, mixed-mode and mode-II overload and underload fatigue cycles in an otherwise constant amplitude mode-I baseline load spectrum. The micromechanisms governing crack growth behavior under the complex biaxial loading conditions were identified and correlated with the crack growth behavior and fracture surface morphology through quantitative fractography.

(ii) Development of novel multifunctional nanocomposite materials with improved fatigue resistance and in-situ fatigue damage detection and quantification capabilities. A state-of-the-art processing method was developed for producing sizable carbon nanotube (CNT) membranes for multifunctional composites. The CNT membranes were embedded in glass fiber laminates and in-situ strain sensing and damage quantification was achieved by exploiting the piezoresistive property of the CNT membrane. In addition, improved resistance to fatigue crack growth was observed due to the embedded CNT membrane.
ContributorsDatta, Siddhant (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Marvi, Hamidreza (Committee member) / Tang, Pingbo (Committee member) / Yekani Fard, Masoud (Committee member) / Iyyer, Nagaraja (Committee member) / Arizona State University (Publisher)
Created2018
156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
ContributorsChinimilli, Prudhvi Tej (Author) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
155682-Thumbnail Image.png
Description
Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor

Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor function, state-of-the-art robotic interventions in gait therapy have not resulted in improved outcomes when compared to traditional treadmill-based therapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking is needed to inform robotic interventions in gait therapy. This dissertation presents a systematic exploration of sensorimotor mechanisms of inter-leg coordination by studying the effect of unilateral perturbations of the walking surface stiffness on contralateral muscle activation in healthy populations. An analysis of the contribution of several sensory modalities to the muscle activation of the opposite leg provides new insight into the sensorimotor control mechanisms utilized in human walking, including the role of supra-spinal neural circuits in inter-leg coordination. Based on these insights, a model is created which relates the unilateral deflection of the walking surface to the resulting neuromuscular activation in the opposite leg. Additionally, case studies with hemiplegic walkers indicate the existence of the observed mechanism in neurologically impaired walkers. The results of this dissertation suggest a novel approach to gait therapy for hemiplegic patients in which desired muscle activity is evoked in the impaired leg by only interacting with the healthy leg. One of the most significant advantages of this approach over current rehabilitation protocols is the safety of the patient since there is no direct manipulation of the impaired leg. Therefore, the methods and results presented in this dissertation represent a potential paradigm shift in robot-assisted gait therapy.
ContributorsSkidmore, Jeffrey Alan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2017
189313-Thumbnail Image.png
Description
This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic

This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic structures to tackle these challenges in soft robots. SCRAM devices can modify their dynamic behavior by incorporating reconfigurable anisotropic stiffness, thereby enabling tailored locomotion patterns for specific tasks. This approach simplifies the actuation of robots, resulting in lighter, more flexible, cost-effective, and safer soft robotic systems. This dissertation demonstrates the potential of SCRAM devices through several case studies. These studies investigate virtual joints and shape change propagation in tubes, as well as anisotropic dynamic behavior in vibrational soft twisted beams, effectively demonstrating interesting locomotion patterns that are achievable using simple actuation mechanisms. The dissertation also addresses modeling and simulation challenges by introducing a reduced-order modeling approach. This approach enables fast and accurate simulations of soft robots and is compatible with existing rigid body simulators. Additionally, this dissertation investigates the prototyping processes of SCRAM devices and offers a comprehensive framework for the development of these devices. Overall, this dissertation demonstrates the potential of SCRAM devices to overcome actuation, modeling, and manufacturing challenges in soft robotics. The innovative concepts and approaches presented have implications for various industries that require cost-effective, adaptable, and safe robotic systems. SCRAM devices pave the way for the widespread application of soft robots in diverse domains.
ContributorsJiang, Yuhao (Author) / Aukes, Daniel (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2023
187348-Thumbnail Image.png
Description
The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus

The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus on the analysis of nonlinear dynamical systems via set-membership approximations, as well as the development of controllers and estimators that can give worst-case performance guarantees, especially when the sensor data containing information on system outputs is prone to data drops and delays. For analyzing the distinguishability of nonlinear systems, building upon the idea of set membership over-approximation of the nonlinear systems, a novel optimization-based method for multi-model affine abstraction (i.e., simultaneous set-membership over-approximation of multiple models) is designed. This work solves for the existence of set-membership over-approximations of a pair of different nonlinear models such that the different systems can be distinguished/discriminated within a guaranteed detection time under worst-case uncertainties and approximation errors. Specifically, by combining mesh-based affine abstraction methods with T-distinguishability analysis in the literature yields a bilevel bilinear optimization problem, whereby leveraging robust optimization techniques and a suitable change of variables result in a sufficient linear program that can obtain a tractable solution with T-distinguishability guarantees. Moreover, the thesis studied the designs of controllers and estimators with performance guarantees, and specifically, path-dependent feedback controllers and bounded-error estimators for time-varying affine systems are proposed that are subject to delayed observations or missing data. To model the delayed/missing data, two approaches are explored; a fixed-length language and an automaton-based model. Furthermore, controllers/estimators that satisfy the equalized recovery property (a weaker form of invariance with time-varying finite bounds) are synthesized whose feedback gains can be adapted based on the observed path, i.e., the history of observed data patterns up to the latest available time step. Finally, a robust kinodynamic motion planning algorithm is also developed with collision avoidance and probabilistic completeness guarantees. In particular, methods based on fixed and flexible invariant tubes are designed such that the planned motion/trajectories can reject bounded disturbances using noisy observations.
ContributorsHassaan, Syed Muhammad (Author) / Yong, Sze Zheng (Thesis advisor) / Rivera, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2023
171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
ContributorsSalimi Lafmejani, Amir (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2022
157691-Thumbnail Image.png
Description
Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability.

The robustness of a neural network

Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability.

The robustness of a neural network is defined as the stability of the network output under small input perturbations. It has been shown that neural networks are very sensitive to input perturbations, and the prediction from convolutional neural networks can be totally different for input images that are visually indistinguishable to human eyes. Based on such property, hackers can reversely engineer the input to trick machine learning systems in targeted ways. These adversarial attacks have shown to be surprisingly effective, which has raised serious concerns over safety-critical applications like autonomous driving. In the meantime, many established defense mechanisms have shown to be vulnerable under more advanced attacks proposed later, and how to improve the robustness of neural networks is still an open question.

The generalizability of neural networks refers to the ability of networks to perform well on unseen data rather than just the data that they were trained on. Neural networks often fail to carry out reliable generalizations when the testing data is of different distribution compared with the training one, which will make autonomous driving systems risky under new environment. The generalizability of neural networks can also be limited whenever there is a scarcity of training data, while it can be expensive to acquire large datasets either experimentally or numerically for engineering applications, such as material and chemical design.

In this dissertation, we are thus motivated to improve the robustness and generalizability of neural networks. Firstly, unlike traditional bottom-up classifiers, we use a pre-trained generative model to perform top-down reasoning and infer the label information. The proposed generative classifier has shown to be promising in handling input distribution shifts. Secondly, we focus on improving the network robustness and propose an extension to adversarial training by considering the transformation invariance. Proposed method improves the robustness over state-of-the-art methods by 2.5% on MNIST and 3.7% on CIFAR-10. Thirdly, we focus on designing networks that generalize well at predicting physics response. Our physics prior knowledge is used to guide the designing of the network architecture, which enables efficient learning and inference. Proposed network is able to generalize well even when it is trained with a single image pair.
ContributorsYao, Houpu (Author) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2019
Description
The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the

The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the perspective of soil mechanics. In this study, the razor clam was observed to burrow out of sands simply by extending and contracting its foot periodically. This upward burrowing gait is much simpler than its downward burrowing gait, which also involves opening/closing of the shell and dilation of the foot. The upward burrowing gait inspired the design of a self-burrowing-out soft robot, which drives itself out of sands naturally by extension and contraction through pneumatic inflation and deflation. A simplified analytical model was then proposed and explained the upward burrowing behavior of the robot and razor clams as the asymmetric nature of soil resistances applied on both ends due to the intrinsic stress gradient of sand deposits. To burrow downward, additional symmetry-breaking features are needed for the robot to increase the resistance in the upward burrowing direction and to decrease the resistance in the downward burrowing direction. A potential approach is by incorporating friction anisotropy, which was then experimentally demonstrated to affect the upward burrowing of the soft robot. The downward burrowing gait of razor clams provides another inspiration. By exploring the analogies between the downward burrowing gait and in-situ soil characterization methods, a clam-inspired shape-changing penetrator was designed and penetrated dry granular materials both numerically and experimentally. Results demonstrated that the shell opening not only contributes to forming a penetration anchor by compressing the surrounding particles, but also reduces the foot penetration resistance temporally by creating a stress arch above the foot; the shell closing facilitates the downward burrowing by reducing the friction resistance to the subsequent shell retraction. Findings from this research shed lights on the future design of a clam-inspired self-burrowing robot.
ContributorsHuang, Sichuan (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Zapata, Claudia (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2020
161763-Thumbnail Image.png
Description
Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials.

Granular materials demonstrate complexity in many physical attributes with various shapes and sizes, varying from several centimeters down to less than a few microns. Some materials are highly cohesive, while others are free-flowing. Despite such complexity in their physical properties, they are extremely important in industries dealing with bulk materials. Through this research, the factors affecting flowability of particulate solids and their interaction with projectiles were explored. In Part I, a novel set of characterization tools to relate various granular material properties to their flow behavior in confined and unconfined environments was investigated. Through this work, a thorough characterization study to examine the effects of particle size, particle size distribution, and moisture on bulk powder flowability were proposed. Additionally, a mathematical model to predict the flow function coefficient (FFC) was developed, based on the surface mean diameter and moisture level, which can serve as a flowability descriptor. Part II of this research focuses on the impact dynamics of low velocity projectiles on granular media. Interaction of granular media with external foreign bodies occurs in everyday events like a human footprint on the beach. Several studies involving numerical and experimental methods have focused on the study of impact dynamics in both dry and wet granular media. However, most of the studies involving impact dynamics considered spherical projectiles under different conditions, while practical models should involve more complex, realistic shapes. Different impacting geometries with conserved density, volume, and velocity on a granular bed may experience contrasting drag forces upon penetration. This is due to the difference in the surface areas coming into contact with the granular media. In this study, a set of non-spherical geometries comprising cuboids, cylinders, hexagonal prisms and triangular prisms with constant density, volume, and impact velocities, were released onto a loosely packed, non-cohesive, dry granular bed. From these experimental results, a model to determine the penetration depth of projectiles upon impact was developed and how it is influenced by the release height and surface area of the projectiles in contact with the granular media was studied.
ContributorsVajrala, Spandana (Author) / Emady, Heather N (Thesis advisor) / Marvi, Hamidreza (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
190916-Thumbnail Image.png
Description
Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing

Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing dynamic models and guiding the robots along desired paths. Additionally, soft robots may exhibit rigid behaviors and potentially collide with their surroundings during path tracking tasks, particularly when possible contact points are unknown. In this dissertation, reduced-order models are used to describe the behaviors of three different soft robot designs, including both linear parameter varying (LPV) and augmented rigid robot (ARR) models. While the reduced-order model captures the majority of the soft robot's dynamics, modeling uncertainties notably remain. Non-repeated modeling uncertainties are addressed by categorizing them as a lumped disturbance, employing two methodologies, $H_\infty$ method and nonlinear disturbance observer (NDOB) based sliding mode control, for its rejection. For repeated disturbances, an iterative learning control (ILC) with a P-type learning function is implemented to enhance trajectory tracking efficacy. Furthermore,for non-repeated disturbances, the NDOB facilitates the contact estimation, and its results are jointly used with a switching algorithm to modify the robot trajectories. The stability proof of all controllers and corresponding simulation and experimental results are provided. For a path tracking task of a soft robot with multi-segments, a robust control strategy that combines a LPV model with an innovative improved nonlinear disturbance observer-based adaptive sliding mode control (INASMC). The control framework employs a first-order LPV model for dynamic representation, leverages an improved disturbance observer for accurate disturbance forecasting, and utilizes adaptive sliding mode control to effectively counteract uncertainties. The tracking error under the proposed controller is proven to be asymptotically stable, and the controller's effectiveness is is validated with simulation and experimental results. Ultimately, this research mitigates the inherent uncertainty in soft robot modeling, thereby enhancing their functionality in contact-intensive tasks.
ContributorsQIAO, ZHI (Author) / Zhang, Wenlong (Thesis advisor) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023