This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
ContributorsChinimilli, Prudhvi Tej (Author) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
154700-Thumbnail Image.png
Description
It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work

It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition.



This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range of -160 degC to 120 degC in vacuum conditions. These conditions are similar to the condition experienced by a satellite in a space orbiting around the earth. Also, this study demonstrated various detachment and specimen patch preparation methods. The custom-made experimental setup for adhesion test can measure adhesion force in temperature and pressure controlled environment over specimen size of 1 sq. inch. A cryogenic cooling system with liquid nitrogen is used to achieve -160 degC and an electric resistive heating system are used to achieve 120 degC in controlled volume. Thermal electrodes, infrared thermopile detectors are used to record temperature at sample and pressure indicator to record vacuum condition in controlled volume. Reversibility of the switching behaviour of the specimen in controlled environment confirms its application in space and very high or very low-temperature conditions.

The experimental setup was developed using SolidWorks as a design tool, Ansys as simulation tool and the data acquisition utilizes LabVIEW available in the market today.
ContributorsMate, Sunil (Author) / Marvi, Hamidreza (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2016
154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
155682-Thumbnail Image.png
Description
Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor

Millions of individuals suffer from gait impairments due to stroke or other neurological disorders. A primary goal of patients is to walk independently, but most patients only achieve a poor functional outcome five years after injury. Despite the growing interest in using robotic devices for rehabilitation of sensorimotor function, state-of-the-art robotic interventions in gait therapy have not resulted in improved outcomes when compared to traditional treadmill-based therapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking is needed to inform robotic interventions in gait therapy. This dissertation presents a systematic exploration of sensorimotor mechanisms of inter-leg coordination by studying the effect of unilateral perturbations of the walking surface stiffness on contralateral muscle activation in healthy populations. An analysis of the contribution of several sensory modalities to the muscle activation of the opposite leg provides new insight into the sensorimotor control mechanisms utilized in human walking, including the role of supra-spinal neural circuits in inter-leg coordination. Based on these insights, a model is created which relates the unilateral deflection of the walking surface to the resulting neuromuscular activation in the opposite leg. Additionally, case studies with hemiplegic walkers indicate the existence of the observed mechanism in neurologically impaired walkers. The results of this dissertation suggest a novel approach to gait therapy for hemiplegic patients in which desired muscle activity is evoked in the impaired leg by only interacting with the healthy leg. One of the most significant advantages of this approach over current rehabilitation protocols is the safety of the patient since there is no direct manipulation of the impaired leg. Therefore, the methods and results presented in this dissertation represent a potential paradigm shift in robot-assisted gait therapy.
ContributorsSkidmore, Jeffrey Alan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2017
189313-Thumbnail Image.png
Description
This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic

This dissertation introduces and examines Soft Curved Reconfigurable Anisotropic Mechanisms (SCRAMs) as a solution to address actuation, manufacturing, and modeling challenges in the field of soft robotics, with the aim of facilitating the broader implementation of soft robots in various industries. SCRAM systems utilize the curved geometry of thin elastic structures to tackle these challenges in soft robots. SCRAM devices can modify their dynamic behavior by incorporating reconfigurable anisotropic stiffness, thereby enabling tailored locomotion patterns for specific tasks. This approach simplifies the actuation of robots, resulting in lighter, more flexible, cost-effective, and safer soft robotic systems. This dissertation demonstrates the potential of SCRAM devices through several case studies. These studies investigate virtual joints and shape change propagation in tubes, as well as anisotropic dynamic behavior in vibrational soft twisted beams, effectively demonstrating interesting locomotion patterns that are achievable using simple actuation mechanisms. The dissertation also addresses modeling and simulation challenges by introducing a reduced-order modeling approach. This approach enables fast and accurate simulations of soft robots and is compatible with existing rigid body simulators. Additionally, this dissertation investigates the prototyping processes of SCRAM devices and offers a comprehensive framework for the development of these devices. Overall, this dissertation demonstrates the potential of SCRAM devices to overcome actuation, modeling, and manufacturing challenges in soft robotics. The innovative concepts and approaches presented have implications for various industries that require cost-effective, adaptable, and safe robotic systems. SCRAM devices pave the way for the widespread application of soft robots in diverse domains.
ContributorsJiang, Yuhao (Author) / Aukes, Daniel (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2023
187789-Thumbnail Image.png
Description
Ferrofluidic microrobots have emerged as promising tools for minimally invasive medical procedures, leveraging their unique properties to navigate through complex fluids and reach otherwise inaccessible regions of the human body, thereby enabling new applications in areas such as targeted drug delivery, tissue engineering, and diagnostics. This dissertation develops a

Ferrofluidic microrobots have emerged as promising tools for minimally invasive medical procedures, leveraging their unique properties to navigate through complex fluids and reach otherwise inaccessible regions of the human body, thereby enabling new applications in areas such as targeted drug delivery, tissue engineering, and diagnostics. This dissertation develops a model-predictive controller for the external magnetic manipulation of ferrofluid microrobots. Several experiments are performed to illustrate the adaptability and generalizability of the control algorithm to changes in system parameters, including the three-dimensional reference trajectory, the velocity of the workspace fluid, and the size, orientation, deformation, and velocity of the microrobotic droplet. A linear time-invariant control system governing the dynamics of locomotion is derived and used as the constraints of a least squares optimal control algorithm to minimize the projected error between the actual trajectory and the desired trajectory of the microrobot. The optimal control problem is implemented after time discretization using quadratic programming. In addition to demonstrating generalizability and adaptability, the accuracy of the control algorithm is analyzed for several different types of experiments. The experiments are performed in a workspace with a static surrounding fluid and extended to a workspace with fluid flowing through it. The results suggest that the proposed control algorithm could enable new capabilities for ferrofluidic microrobots, opening up new opportunities for applications in minimally invasive medical procedures, lab-on-a-chip, and microfluidics.
ContributorsSkowronek, Elizabeth Olga (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Platte, Rodrigo (Committee member) / Xu, Zhe (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2023
187348-Thumbnail Image.png
Description
The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus

The introduction of assistive/autonomous features in cyber-physical systems, e.g., self-driving vehicles, have paved the way to a relatively new field of system analysis for safety-critical applications, along with the topic of controlling systems with performance and safety guarantees. The different works in this thesis explore and design methodologies that focus on the analysis of nonlinear dynamical systems via set-membership approximations, as well as the development of controllers and estimators that can give worst-case performance guarantees, especially when the sensor data containing information on system outputs is prone to data drops and delays. For analyzing the distinguishability of nonlinear systems, building upon the idea of set membership over-approximation of the nonlinear systems, a novel optimization-based method for multi-model affine abstraction (i.e., simultaneous set-membership over-approximation of multiple models) is designed. This work solves for the existence of set-membership over-approximations of a pair of different nonlinear models such that the different systems can be distinguished/discriminated within a guaranteed detection time under worst-case uncertainties and approximation errors. Specifically, by combining mesh-based affine abstraction methods with T-distinguishability analysis in the literature yields a bilevel bilinear optimization problem, whereby leveraging robust optimization techniques and a suitable change of variables result in a sufficient linear program that can obtain a tractable solution with T-distinguishability guarantees. Moreover, the thesis studied the designs of controllers and estimators with performance guarantees, and specifically, path-dependent feedback controllers and bounded-error estimators for time-varying affine systems are proposed that are subject to delayed observations or missing data. To model the delayed/missing data, two approaches are explored; a fixed-length language and an automaton-based model. Furthermore, controllers/estimators that satisfy the equalized recovery property (a weaker form of invariance with time-varying finite bounds) are synthesized whose feedback gains can be adapted based on the observed path, i.e., the history of observed data patterns up to the latest available time step. Finally, a robust kinodynamic motion planning algorithm is also developed with collision avoidance and probabilistic completeness guarantees. In particular, methods based on fixed and flexible invariant tubes are designed such that the planned motion/trajectories can reject bounded disturbances using noisy observations.
ContributorsHassaan, Syed Muhammad (Author) / Yong, Sze Zheng (Thesis advisor) / Rivera, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2023
171752-Thumbnail Image.png
Description
Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws

Building and optimizing a design for deformable media can be extremely costly. However, granular scaling laws enable the ability to predict system velocity and mobility power consumption by testing at a smaller scale in the same environment. The validity of the granular scaling laws for arbitrarily shaped wheels and screws were evaluated in materials like silica sand and BP-1, a lunar simulant. Different wheel geometries, such as non-grousered and straight and bihelically grousered wheels were created and tested using 3D printed technologies. Using the granular scaling laws and the empirical data from initial experiments, power and velocity were predicted for a larger scaled version then experimentally validated on a dynamic mobility platform. Working with granular media has high variability in material properties depending on initial environmental conditions, so particular emphasis was placed on consistency in the testing methodology. Through experiments, these scaling laws have been validated with defined use cases and limitations.
ContributorsMcbryan, Teresa (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022