This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

152117-Thumbnail Image.png
Description
With the advent of parallel processing, primarily the time-interleaved pipeline ADCs, high speed and high resolution ADCs became a possibility. When these speeds touch giga samples per second and resolutions go beyond 12-bits, the parallelization becomes more extensive leading to repeated presence of several identical blocks in the architecture. This

With the advent of parallel processing, primarily the time-interleaved pipeline ADCs, high speed and high resolution ADCs became a possibility. When these speeds touch giga samples per second and resolutions go beyond 12-bits, the parallelization becomes more extensive leading to repeated presence of several identical blocks in the architecture. This thesis discusses one such block, the sub-ADC (Flash ADC), of the pipeline and sharing it with more than two of the parallel processing channels thereby reducing area and power and input load capacitance to each stage. This work presents a design of 'sub-ADC shared in a time-interleaved pipeline ADC' in the IBM 8HP process. It has been implemented with an offset-compensated, kickback-compensated, fast decision making (large input bandwidth) and low power comparator that forms the core part of the design.
ContributorsBikkina, Phaneendra Kumar (Author) / Barnaby, Hugh (Thesis advisor) / Mikkola, Esko (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013