This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

156167-Thumbnail Image.png
Description
Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux

Membrane filtration is an important technology in industry. In the past few decades, equations have been developed from experimental results to predict cake formation and permeate flux decline in the membrane filtration process. In the current work, the block of particles on membrane surface is achieved by setting surface flux on membrane surface zero. This approach is implemented for both microfiltration and nanofiltration using OpenFOAM. Moreover, a new method to deal with cake resistance for nanofiltration is introduced. Cake resistance is applied to both cake and membrane. To validate the new techniques, results of crossflow microfiltration are compared to theoretical results and results of two crossflow nanofiltration cases are compared to experimental data. In addition, the new techniques are applied to dead end filtration to observe the different structure of the cake and explore the effect of resistance on velocity profile.
ContributorsHu, Jueming (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2018