This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

149395-Thumbnail Image.png
Description
The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate

The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate the radiation dose level using RADFET, a wired readout circuit is necessary. Using the same principle of oxide-trapped charge build-up, but by monitoring the change in capacitance instead of threshold voltage, a wireless dose sensor can be developed. This RADiation sensitive CAPacitor (RADCAP) mounted on a resonant patch antenna can then become a wireless dose sensor. From the resonant frequency, the capacitance can be extracted which can be mapped back to estimate the radiation dose level. The capacitor acts as both radiation dose sensor and resonator element in the passive antenna loop. Since the MOS capacitor is used in passive state, characterizing various parameters that affect the radiation sensitivity is essential. Oxide processing technique, choice of insulator material, and thickness of the insulator, critically affect the dose response of the sensor. A thicker oxide improves the radiation sensitivity but reduces the dynamic range of dose levels for which the sensor can be used. The oxide processing scheme primarily determines the interface trap charge and oxide-trapped charge development; controlling this parameter is critical to building a better dose sensor.
ContributorsSrinivasan Gopalan, Madusudanan (Author) / Barnaby, Hugh (Thesis advisor) / Holbert, Keith E. (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2010