This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

156054-Thumbnail Image.png
Description
Medical errors are now estimated to be the third leading cause of death in the United States (Makary & Daniel, 2016). Look-alike, sound- alike prescription drug mix-ups contribute to this figure. The US Food and Drug Administration (FDA) and Institute for Safe Medication Practices (ISMP) have recommended the use of

Medical errors are now estimated to be the third leading cause of death in the United States (Makary & Daniel, 2016). Look-alike, sound- alike prescription drug mix-ups contribute to this figure. The US Food and Drug Administration (FDA) and Institute for Safe Medication Practices (ISMP) have recommended the use of Tall Man lettering since 2008, in which dissimilar portions of confusable drug names pairs are capitalized in order to make them more distinguishable. Research on the efficacy of Tall Man lettering in differentiating confusable drug name pairs has been inconclusive and it is imperative to investigate potential efficacy further considering the clinical implications (Lambert, Schroeder & Galanter, 2015). The present study aimed to add to the body of research on Tall Man lettering while also investigating another possibility for the mechanism behind Tall Man’s efficacy, if it in fact exists. Studies indicate that the first letter in a word offers an advantage over other positions, resulting in more accurate and faster recognition (Adelman, Marquis & Sabatos-DeVito, 2010; Scaltritti & Balota, 2013). The present study used a 2x3 repeated measures design to analyze the effect of position on Tall Man lettering efficacy. Participants were shown a prime drug, followed by a brief mask, and then either the same drug name or its confusable pair and asked to identify whether they were the same or different. All participants completed both lowercase and Tall Man conditions. Overall performance measured by accuracy and reaction time revealed lowercase to be more effective than Tall Man. With regard to the position of Tall Man letters, a first position advantage was seen both in accuracy and reaction time. A first position advantage was seen in the lowercase condition as well, suggesting the location of the differing portion of the word matters more than the format used. These findings add to the body of inconclusive research on the efficacy of Tall Man lettering in drug name confusion. Considering its impact on patient safety, more research should be conducted to definitively answer the question as to whether or not Tall Man should be used in practice.
ContributorsKnobloch, Ashley (Author) / Branaghan, Russell (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
157384-Thumbnail Image.png
Description
Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss,

Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss, and how they spend their time on those activities. The survey was given to aviation students at Arizona State University (ASU) Polytechnic Campus. ASU student pilots were found to be fatigued through a single sample t-test. Other t-tests were done on each of the questions that asked student pilots how flight training, school work, work outside of school and social obligations affect their sleep loss. Flight training and school were found to be contributing to student pilots sleep loss. Work outside of school and social obligations were found to not be contributing to student pilots sleep loss. It was found that student pilots’ tendency to use a planner or calendar was found to not be significant. Along with this planning through the week when they will do assignments or study for exams was also not found to be significant. Students making lists of assignments and when they are due was also found to not be significant. The t-test also found that student pilots are neutral on the topic of whether good time management skills would help increase the amount of sleep that they get.
ContributorsHarris, Mariah Jean (Author) / Cooke, Nancy J. (Thesis advisor) / Nullmeyer, Robert (Thesis advisor) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
155270-Thumbnail Image.png
Description
Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and

Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and inattentive driving are the primary causes of vehicle crashes or near crashes. In this research, a novel approach to detect and mitigate various levels of driving distractions is proposed. This novel approach consists of two main phases: i.) Proposing a system to detect various levels of driver distractions (low, medium, and high) using a machine learning techniques. ii.) Mitigating the effects of driver distractions through the integration of the distracted driving detection algorithm and the existing vehicle safety systems. In phase- 1, vehicle data were collected from an advanced driving simulator and a visual based sensor (webcam) for face monitoring. In addition, data were processed using a machine learning algorithm and a head pose analysis package in MATLAB. Then the model was trained and validated to detect different human operator distraction levels. In phase 2, the detected level of distraction, time to collision (TTC), lane position (LP), and steering entropy (SE) were used as an input to feed the vehicle safety controller that provides an appropriate action to maintain and/or mitigate vehicle safety status. The integrated detection algorithm and vehicle safety controller were then prototyped using MATLAB/SIMULINK for validation. A complete vehicle power train model including the driver’s interaction was replicated, and the outcome from the detection algorithm was fed into the vehicle safety controller. The results show that the vehicle safety system controller reacted and mitigated the vehicle safety status-in closed loop real-time fashion. The simulation results show that the proposed approach is efficient, accurate, and adaptable to dynamic changes resulting from the driver, as well as the vehicle system. This novel approach was applied in order to mitigate the impact of visual and cognitive distractions on the driver performance.
ContributorsAlomari, Jamil (Author) / Mayyas, AbdRaouf (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155902-Thumbnail Image.png
Description
We experience spatial separation and temporal asynchrony between visual and

haptic information in many virtual-reality, augmented-reality, or teleoperation systems.

Three studies were conducted to examine the spatial and temporal characteristic of

multisensory integration. Participants interacted with virtual springs using both visual and

haptic senses, and their perception of stiffness and ability to differentiate stiffness

We experience spatial separation and temporal asynchrony between visual and

haptic information in many virtual-reality, augmented-reality, or teleoperation systems.

Three studies were conducted to examine the spatial and temporal characteristic of

multisensory integration. Participants interacted with virtual springs using both visual and

haptic senses, and their perception of stiffness and ability to differentiate stiffness were

measured. The results revealed that a constant visual delay increased the perceived stiffness,

while a variable visual delay made participants depend more on the haptic sensations in

stiffness perception. We also found that participants judged stiffness stiffer when they

interact with virtual springs at faster speeds, and interaction speed was positively correlated

with stiffness overestimation. In addition, it has been found that participants could learn an

association between visual and haptic inputs despite the fact that they were spatially

separated, resulting in the improvement of typing performance. These results show the

limitations of Maximum-Likelihood Estimation model, suggesting that a Bayesian

inference model should be used.
ContributorsSim, Sung Hun (Author) / Wu, Bing (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Robert (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2017
155568-Thumbnail Image.png
Description
This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.
ContributorsDemir, Mustafa, Ph.D (Author) / Cooke, Nancy J. (Thesis advisor) / Bekki, Jennifer (Committee member) / Amazeen, Polemnia G (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023
157710-Thumbnail Image.png
Description
With the growth of autonomous vehicles’ prevalence, it is important to understand the relationship between autonomous vehicles and the other drivers around them. More specifically, how does one’s knowledge about autonomous vehicles (AV) affect positive and negative affect towards driving in their presence? Furthermore, how does trust of autonomous vehicles

With the growth of autonomous vehicles’ prevalence, it is important to understand the relationship between autonomous vehicles and the other drivers around them. More specifically, how does one’s knowledge about autonomous vehicles (AV) affect positive and negative affect towards driving in their presence? Furthermore, how does trust of autonomous vehicles correlate with those emotions? These questions were addressed by conducting a survey to measure participant’s positive affect, negative affect, and trust when driving in the presence of autonomous vehicles. Participants’ were issued a pretest measuring existing knowledge of autonomous vehicles, followed by measures of affect and trust. After completing this pre-test portion of the study, participants were given information about how autonomous vehicles work, and were then presented with a posttest identical to the pretest. The educational intervention had no effect on positive or negative affect, though there was a positive relationship between positive affect and trust and a negative relationship between negative affect and trust. These findings will be used to inform future research endeavors researching trust and autonomous vehicles using a test bed developed at Arizona State University. This test bed allows for researchers to examine the behavior of multiple participants at the same time and include autonomous vehicles in studies.
ContributorsMartin, Sterling (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157942-Thumbnail Image.png
Description
Vehicular automation and autonomy are emerging fields that are growing at an

exponential rate, expected to alter the very foundations of our transportation system within the next 10-25 years. A crucial interaction has been born out this new technology: Human and automated drivers operating within the same environment. Despite the well-

Vehicular automation and autonomy are emerging fields that are growing at an

exponential rate, expected to alter the very foundations of our transportation system within the next 10-25 years. A crucial interaction has been born out this new technology: Human and automated drivers operating within the same environment. Despite the well- known dangers of automobiles and driving, autonomous vehicles and their consequences on driving environments are not well understood by the population who will soon be interacting with them every day. Will an improvement in the understanding of autonomous vehicles have an effect on how humans behave when driving around them? And furthermore, will this improvement in the understanding of autonomous vehicles lead to higher levels of trust in them? This study addressed these questions by conducting a survey to measure participant’s driving behavior and trust when in the presence of autonomous vehicles. Participants were given several pre-tests to measure existing knowledge and trust of autonomous vehicles, as well as to see their driving behavior when in close proximity to autonomous vehicles. Then participants were presented with an educational intervention, detailing how autonomous vehicles work, including their decision processes. After examining the intervention, participants were asked to repeat post-tests identical to the ones administered before the intervention. Though a significant difference in self-reported driving behavior was measure between the pre-test and post- test, there was no significant relation found between improvement in scores on the education intervention knowledge check and driving behavior. There was also no significant relation found between improvement in scores on the education intervention knowledge check and the change in trust scores. These findings can be used to inform autonomous vehicle and infrastructure design as well as future studies of the effects of autonomous vehicles on human drivers in experimental settings.
ContributorsReagan, Taylor (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
158598-Thumbnail Image.png
Description
Despite the prevalence of teams in complex sociotechnical systems, current approaches to understanding workload tend to focus on the individual operator. However, research suggests that team workload has emergent properties and is not necessarily equivalent to the aggregate of individual workload. Assessment of communications provides a means of examining aspects

Despite the prevalence of teams in complex sociotechnical systems, current approaches to understanding workload tend to focus on the individual operator. However, research suggests that team workload has emergent properties and is not necessarily equivalent to the aggregate of individual workload. Assessment of communications provides a means of examining aspects of team workload in highly interdependent teams. This thesis set out to explore how communications are associated with team workload and performance under high task demand in all-human and human–autonomy teams in a command and control task. A social network analysis approach was used to analyze the communications of 30 different teams, each with three members operating in a command and control task environment of over a series of five missions. Teams were assigned to conditions differentiated by their composition with either a naïve participant, a trained confederate, or a synthetic agent in the pilot role. Social network analysis measures of centralization and intensity were used to assess differences in communications between team types and under different levels of demand, and relationships between communication measures, performance, and workload distributions were also examined. Results indicated that indegree centralization was greater in the all-human control teams than in the other team types, but degree centrality standard deviation and intensity were greatest in teams with a highly trained experimenter pilot. In all three team types, the intensity of communications and degree centrality standard deviation appeared to decrease during the high demand mission, but indegree and outdegree centralization did not. Higher communication intensity was associated with more efficient target processing and more successful target photos per mission, but a clear relationship between measures of performance and decentralization of communications was not found.
ContributorsJohnson, Craig Jonathon (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Gutzwiller, Robert S (Committee member) / Arizona State University (Publisher)
Created2020