This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152606-Thumbnail Image.png
Description
GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to

GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to obtain the device performance described by detailed balance theory. The photon recycling model has been developed and was applied to investigate the loss mechanisms in the state-of-the-art GaAs-based solar cell structures using PC1D software. A standard fabrication process of the GaAs-based solar cells is as follows: wafer preparation, individual cell isolation by mesa, n- and p-type metallization, rapid thermal annealing (RTA), cap layer etching, and anti-reflection coating (ARC). The growth rate for GaAs-based materials is one of critical factors to determine the cost for the growth of GaAs-based solar cells. The cost for fabricating GaAs-based solar cells can be reduced if the growth rate is increased without degrading the crystalline quality. The solar cell wafers grown at different growth rates of 14 μm/hour and 55 μm/hour were discussed in this work. The structural properties of the wafers were characterized by X-ray diffraction (XRD) to identify the crystalline quality, and then the as-grown wafers were fabricated into solar cell devices under the same process conditions. The optical and electrical properties such as surface reflection, external quantum efficiency (EQE), dark I-V, Suns-Voc, and illuminated I-V under one sun using a solar simulator were measured to compare the performances of the solar cells with different growth rates. Some simulations in PC1D have been demonstrated to investigate the reasons of the different device performances between fast growth and slow growth structures. A further analysis of the minority carrier lifetime is needed to investigate into the difference in device performances.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Arizona State University (Publisher)
Created2014
153449-Thumbnail Image.png
Description
In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures (i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE).

In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption for the target spectral range (600 ~ 1100nm), which is attributed to (1) the effective confinement of resonant scattering within the Si NP and (2) increased high order diffraction of transmitted light providing an extended absorption length. From the research, therefore, it is successfully demonstrated that the nano-fabrication process with SNS lithography can offer enhanced lithographical accuracy to fabricate desired Si nanostructures which can realize enhanced light absorption for thin Si solar cell.
ContributorsChoi, JeaYoung (Author) / Honsberg, Christiana (Thesis advisor) / Alford, Terry (Thesis advisor) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150154-Thumbnail Image.png
Description
As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these materials in advanced concept nanostructured solar cells must be understood. Chief among these is the determination and predication of optimum electronic band structures, including effects such as strain on the band structure, and the material's opto-electronic properties. Nanostructures have a large impact on band structure and electronic properties through quantum confinement. An additional large effect is the change in band structure due to elastic strain caused by lattice mismatch between the barrier and nanostructured (usually self-assembled QDs) materials. To develop a material model for advanced concept solar cells, the band structure is calculated for single as well as vertical array of quantum dots with the realistic effects such as strain, associated with the epitaxial growth of these materials. The results show significant effect of strain in band structure. More importantly, the band diagram of a vertical array of QDs with different spacer layer thickness show significant change in band offsets, especially for heavy and light hole valence bands when the spacer layer thickness is reduced. These results, ultimately, have significance to develop a material model for advance concept solar cells that use the QD nanostructures as absorbing medium. The band structure calculations serve as the basis for multiple other calculations. Chief among these is that the model allows the design of a practical QD advanced concept solar cell, which meets key design criteria such as a negligible valence band offset between the QD/barrier materials and close to optimum band gaps, resulting in the predication of optimum material combinations.
ContributorsDahal, Som Nath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Roedel, Ronald (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
155905-Thumbnail Image.png
Description
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.

Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.

In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).

The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2017
154021-Thumbnail Image.png
Description
The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.

In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.

After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.

Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
ContributorsKim, Yeongho (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015
168529-Thumbnail Image.png
Description
To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently

To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently to integrate III-V with Si for multi-junction solar cell purposes. The focus of this paper is to explore GaP-based dilute nitrides as a possible top cell candidate for Si-based multi-junctions. The direct growth of dilute nitrides in a lattice-matched configuration epitaxially in literature is reviewed. The problems associated with such growths are outlined and pathways to mitigate these problems are presented. The need for a GaP buffer layer between the dilute nitride film and Si is established. Defects in GaP/Si system are explored in detail and a study on pit formation during such growth is performed. Effective suppression of pits in GaP surface grown on Si is achieved. Issues facing GaP-based dilute nitrides in terms of material properties are outlined. Review of these challenges is done and some possible future areas of interest to improve material quality are established. Finally, the growth process of dilute nitrides using Molecular Beam Epitaxy tool is explained. Results for GaNP grown on Si pre and post growth treatments are detailed.
ContributorsMurali, Srinath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2022
187785-Thumbnail Image.png
Description
This study focuses on the implications of a high reverse bias breakdown in silicon heterojunction cells (SHJ). In relevant literature, there is a lack of explicit investigation which compares high breakdown voltage cells (commonly SHJ) to low breakdown voltage cells (commonly silicon homojunctions) in an installation setting. In addition, their

This study focuses on the implications of a high reverse bias breakdown in silicon heterojunction cells (SHJ). In relevant literature, there is a lack of explicit investigation which compares high breakdown voltage cells (commonly SHJ) to low breakdown voltage cells (commonly silicon homojunctions) in an installation setting. In addition, their relationship with shading and how they react with bypass diodes are also not very prevalent. Therefore, my project dives into how shading impacts a string of high breakdown voltage cells and a string of low breakdown voltage cells, as well as how those cells interact with a bypass diode. In order to conduct this investigation, I used the simulation software LTSpice XVII to create an accurate simulation model of a SHJ cell with a 21 V reverse breakdown voltage. With this cell model, I strung 10 cells together, and varied the shading on a single cell while measuring the string’s output current, voltage, and power. Next, I attached a bypass diode to the shaded cell, and continued to increase the number of cells attached to the bypass diode while continuing to examine the string’s output. Once I gathered this data, I modified the original cell model to have a lower reverse breakdown voltage of 5 V. From here, I strung 10 cells together again, and repeated the same measurements from the 21 V string. Upon completing these measurements, I found that the SHJ cells were in fact harder to force into reverse bias than the cells with the lower reverse breakdown voltage, suggesting that solar installation owners should consider transitioning to SHJ-based modules. When bypass diodes are being considered, my results demonstrated that heavy shading (about 65% and higher) was required for the bypass diodes to have an observable impact on the string’s power output. Therefore, owners should consider how severe the shading their installation may receive before investing in bypass diodes. If owners do find the need for the bypass diodes, my findings also show that the diodes should be used sparingly and in a compromise with output power and cost.
ContributorsAvalos, Christian (Author) / Honsberg, Christiana (Thesis advisor) / Bowden, Stuart (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2023