This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171495-Thumbnail Image.png
Description
Multimodal reasoning is one of the most interesting research fields because of the ability to interact with systems and the explainability of the models' behavior. Traditional multimodal research problems do not focus on complex commonsense reasoning (such as physical interactions). Although real-world objects have physical properties associated with them,

Multimodal reasoning is one of the most interesting research fields because of the ability to interact with systems and the explainability of the models' behavior. Traditional multimodal research problems do not focus on complex commonsense reasoning (such as physical interactions). Although real-world objects have physical properties associated with them, many of these properties (such as mass and coefficient of friction) are not captured directly by the imaging pipeline. Videos often capture objects, their motion, and the interactions between different objects. However, these properties can be estimated by utilizing cues from relative object motion and the dynamics introduced by collisions. This thesis introduces a new video question-answering task for reasoning about the implicit physical properties of objects in a scene, from videos. For this task, I introduce a dataset -- CRIPP-VQA (Counterfactual Reasoning about Implicit Physical Properties - Video Question Answering), which contains videos of objects in motion, annotated with hypothetical/counterfactual questions about the effect of actions (such as removing, adding, or replacing objects), questions about planning (choosing actions to perform to reach a particular goal), as well as descriptive questions about the visible properties of objects. Further, I benchmark the performance of existing video question-answering models on two test settings of CRIPP-VQA: i.i.d. and an out-of-distribution setting which contains objects with values of mass, coefficient of friction, and initial velocities that are not seen in the training distribution. Experiments reveal a surprising and significant performance gap in terms of answering questions about implicit properties (the focus of this thesis) and explicit properties (the focus of prior work) of objects.
ContributorsPatel, Maitreya Jitendra (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Lee, Kookjin (Committee member) / Arizona State University (Publisher)
Created2022
189367-Thumbnail Image.png
Description
With the rise in social media usage and rapid communication, the proliferation of misinformation and fake news has become a pressing concern. The detection of multimodal fake news requires careful consideration of both image and textual semantics with proper alignment of the embedding space. Automated fake news detection has gained

With the rise in social media usage and rapid communication, the proliferation of misinformation and fake news has become a pressing concern. The detection of multimodal fake news requires careful consideration of both image and textual semantics with proper alignment of the embedding space. Automated fake news detection has gained significant attention in recent years. Existing research has focused on either capturing cross-modal inconsistency information or leveraging the complementary information within image-text pairs. However, the potential of powerful cross-modal contrastive learning methods and effective modality mixing remains an open-ended question. The thesis proposes a novel two-leg single-tower architecture equipped with self-attention mechanisms and custom contrastive loss to efficiently aggregate multimodal features. Furthermore, pretraining and fine-tuning are employed on the custom transformer model to classify fake news across the popular Twitter multimodal fake news dataset. The experimental results demonstrate the efficacy and robustness of the proposed approach, offering promising advancements in multimodal fake news detection research.
ContributorsLakhanpal, Sanyam (Author) / Lee, Kookjin (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023