This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

152834-Thumbnail Image.png
Description
Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task.

Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task. More often than not, a user may provide no knowledge or at best partial knowledge of her preferences with respect to a desired plan. Similarly, a domain writer may only be able to determine certain parts, not all, of the model of some actions in a domain. Such modeling issues requires new concepts on what a solution should be, and novel techniques in solving the problem. When user preferences are incomplete, rather than presenting a single plan, the planner must instead provide a set of plans containing one or more plans that are similar to the one that the user prefers. This research first proposes the usage of different measures to capture the quality of such plan sets. These are domain-independent distance measures based on plan elements if no knowledge of the user preferences is given, or the Integrated Preference Function measure in case incomplete knowledge of such preferences is provided. It then investigates various heuristic approaches to generate plan sets in accordance with these measures, and presents empirical results demonstrating the promise of the methods. The second part of this research addresses planning problems with incomplete domain models, specifically those annotated with possible preconditions and effects of actions. It formalizes the notion of plan robustness capturing the probability of success for plans during execution. A method of assessing plan robustness based on the weighted model counting approach is proposed. Two approaches for synthesizing robust plans are introduced. The first one compiles the robust plan synthesis problems to the conformant probabilistic planning problems. The second approximates the robustness measure with lower and upper bounds, incorporating them into a stochastic local search for estimating distance heuristic to a goal state. The resulting planner outperforms a state-of-the-art planner that can handle incomplete domain models in both plan quality and planning time.
ContributorsNguyễn, Tuấn Anh (Author) / Kambhampati, Subbarao (Thesis advisor) / Baral, Chitta (Committee member) / Do, Minh (Committee member) / Lee, Joohyung (Committee member) / Smith, David E. (Committee member) / Arizona State University (Publisher)
Created2014