This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

168323-Thumbnail Image.png
Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and

Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
ContributorsHoulihan, Lena Mary (Author) / Preul, Mark C. (Thesis advisor) / Vernon, Brent (Thesis advisor) / O' Sullivan, Michael G.J. (Committee member) / Lawton, Michael T. (Committee member) / Santarelli, Griffin (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2021
154322-Thumbnail Image.png
Description
The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus

The unique anatomical and functional properties of vasculature determine the susceptibility of the spinal cord to ischemia. The spinal cord vascular architecture is designed to withstand major ischemic events by compensating blood supply via important anastomotic channels. One of the important compensatory channels of the arterial basket of the conus medullaris (ABCM). ABCM consists of one or two arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries. In addition to compensatory function, the arterial basket can be involved in arteriovenous fistulae and malformations of the conus. The morphometric anatomical analysis of the ABCM was performed with emphasis on vessel diameters and branching patterns.

A significant ischemic event that overcomes vascular compensatory capacity causes spinal cord injury (SCI). For example, SCI complicating thoracoabdominal aortic aneurysm repair is associated with ischemic injury. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic spinal cord injury causes complex changes in spinal cord blood flow (SCBF), which are closely related to a severity of injury. Manipulating physiological parameters such as mean arterial pressure (MAP) and intrathecal pressure (ITP) may be beneficial for patients with a spinal cord injury. It was discovered in a pig model of SCI that the combination of MAP elevation and cerebrospinal fluid drainage (CSFD) significantly and sustainably improved SCBF and spinal cord perfusion pressure.

In animal models of SCI, regeneration is usually evaluated histologically, requiring animal sacrifice. Thus, there is a need for a technique to detect changes in SCI noninvasively over time. The study was performed comparing manganese-enhanced magnetic resonance imaging (MEMRI) in hemisection and transection SCI rat models with diffusion tensor imaging (DTI) and histology. MEMERI ratio differed among transection and hemisection groups, correlating to a severity of SCI measured by fraction anisotropy and myelin load. MEMRI is a useful noninvasive tool to assess a degree of neuronal damage after SCI.
ContributorsMartirosyan, Nikolay (Author) / Preul, Mark C (Thesis advisor) / Vernon, Brent (Thesis advisor) / Theodore, Nicholas (Committee member) / Lemole, Gerald M. (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
158352-Thumbnail Image.png
Description
Intraoperative diagnosis in neurosurgery has traditionally relied on frozen and formalin-fixed, paraffin-embedded section analysis of biopsied tissue samples. Although this technique is considered to be the “gold standard” for establishing a histopathologic diagnosis, it entails a number of significant limitations such as invasiveness and the time required for processing and

Intraoperative diagnosis in neurosurgery has traditionally relied on frozen and formalin-fixed, paraffin-embedded section analysis of biopsied tissue samples. Although this technique is considered to be the “gold standard” for establishing a histopathologic diagnosis, it entails a number of significant limitations such as invasiveness and the time required for processing and interpreting the tissue. Rapid intraoperative diagnosis has become possible with a handheld confocal laser endomicroscopy (CLE) system. Combined with appropriate fluorescent stains or labels, CLE provides an imaging technique for real-time intraoperative visualization of histopathologic features of the suspected tumor and healthy tissues.

This thesis scrutinizes CLE technology for its ability to provide real-time intraoperative in vivo and ex vivo visualization of histopathological features of the normal and tumor brain tissues. First, the optimal settings for CLE imaging are studied in an animal model along with a generational comparison of CLE performance. Second, the ability of CLE to discriminate uninjured normal brain, injured normal brain and tumor tissues is demonstrated. Third, CLE was used to investigate cerebral microvasculature and blood flow in normal and pathological conditions. Fourth, the feasibility of CLE for providing optical biopsies of brain tumors was established during the fluorescence-guided neurosurgical procedures. This study established the optimal workflow and confirmed the high specificity of the CLE optical biopsies. Fifth, the feasibility of CLE was established for endoscopic endonasal approaches and interrogation of pituitary tumor tissue. Finally, improved and prolonged near wide-field fluorescent visualization of brain tumor margins was demonstrated with a scanning fiber endoscopy and 5-aminolevulinic acid.

These studies suggested a novel paradigm for neurosurgery-pathology workflow when the noninvasive intraoperative optical biopsies are used to interrogate the tissue and augment intraoperative decision making. Such optical biopsies could shorten the time for obtaining preliminary information on the histological composition of the tissue of interest and may lead to improved diagnostics and tumor resection. This work establishes a basis for future in vivo optical biopsy use in neurosurgery and planning of patient-related outcome studies. Future studies would lead to refinement and development of new confocal scanning technologies making noninvasive optical biopsy faster, convenient and more accurate.
ContributorsBelykh, Evgenii (Author) / Preul, Mark C (Thesis advisor) / Vernon, Brent (Thesis advisor) / Nakaji, Peter (Committee member) / Stabenfeldt, Sarah E (Committee member) / Arizona State University (Publisher)
Created2020