This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156527-Thumbnail Image.png
Description
Childhood Apraxia of Speech (CAS) is a severe motor speech disorder that is difficult to diagnose as there is currently no gold-standard measurement to differentiate between CAS and other speech disorders. In the present study, we investigate underlying biomarkers associated with CAS in addition to enhanced phenotyping through behavioral testing.

Childhood Apraxia of Speech (CAS) is a severe motor speech disorder that is difficult to diagnose as there is currently no gold-standard measurement to differentiate between CAS and other speech disorders. In the present study, we investigate underlying biomarkers associated with CAS in addition to enhanced phenotyping through behavioral testing. Cortical electrophysiological measures were utilized to investigate differences in neural activation in response to native and non-native vowel contrasts between children with CAS and typically developing peers. Genetic analysis included full exome sequencing of a child with CAS and his unaffected parents in order to uncover underlying genetic variation that may be causal to the child’s severely impaired speech and language. Enhanced phenotyping was completed through extensive behavioral testing, including speech, language, reading, spelling, phonological awareness, gross/fine motor, and oral and hand motor tasks. Results from cortical electrophysiological measures are consistent with previous evidence of a heightened neural response to non-native sounds in CAS, potentially indicating over specified phonological representations in this population. Results of exome sequencing suggest multiple genetic variations contributing to the severely affected phenotype in the child and provide further evidence of heterogeneous genomic pathways associated with CAS. Finally, results of behavioral testing demonstrate significant impairments evident across tasks in CAS, suggesting underlying sequential processing deficits in multiple domains. Overall, these results have the potential to delineate functional pathways from genetic variations to the brain to observable behavioral phenotypes and motivate the development of preventative and targeted treatment approaches.
ContributorsVose, Caitlin (Author) / Peter, Beate (Thesis advisor) / Liu, Li (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2018
187742-Thumbnail Image.png
Description
More than a century of research has investigated the etiology of dyslexia, coalescing around ‘phonological awareness’ – the ability to recognize and manipulate phonemes – as a trait typically deficient in reading disorders. Meanwhile, the last few decades of research in neuroscience have highlighted the brain as a predictive organ,

More than a century of research has investigated the etiology of dyslexia, coalescing around ‘phonological awareness’ – the ability to recognize and manipulate phonemes – as a trait typically deficient in reading disorders. Meanwhile, the last few decades of research in neuroscience have highlighted the brain as a predictive organ, which subliminally calibrates sensory expectations according to experience. Do the brains of adults with dyslexia respond differently than those of matched controls to expected tones and unexpected omissions? While auditory oddball paradigms have previously been used to study dyslexia, these studies often interpret group differences to indicate deficit auditory discrimination rather than deficit auditory prediction. The current study takes a step toward fusing theories of predictive coding and dyslexia, finding that event-related potentials related to auditory prediction are attenuated in adults with dyslexia compared with typical controls. It further suggests that understanding dyslexia, and perhaps other psychiatric disorders, in terms of contributory neural systems will elucidate shared and distinct etiologies.
ContributorsBennett, Augustin (Author) / Peter, Beate (Thesis advisor) / Daliri, Ayoub (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
172003-Thumbnail Image.png
Description
Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in

Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in electroencephalographic-produced Event-Related Potentials (ERPs) is affected as well by diminished memory forming in adults with dyslexia. Additionally, signal/ noise processing for auditory-based memory recollection and thus word learning is explored. Methods: Nineteen adults with dyslexia and 18 adult controls participated in a classic auditory oddball electroencephalographic experiment here referred to as DIFF, to indicate that the tones differed in frequency, while incorporating a decision-making task that signified participant tonal discrimination. Mismatch Negativity (MMN) amplitudes (AMPs) and latencies were collected from ERPs. Behavioral data consisting of reaction time (RT) and accuracy (ACC) of tone choice were documented. Results: Group differences for accuracy and reaction time in the DIFF task were highly significant. The dyslexic group produced longer reaction times and with less accuracy than the control group. The Mismatch Negativity amplitude and latency collected did not differ significantly between groups, however, correlations to other variables obtained from similar studies consisting of the same participant group were observed. Linear regression models indicated predictions for accuracy and reaction time results based upon WID scores (Word Identification Test) and SWE scores (Sight Word Efficiency) respectfully. Conclusions: Neural processing speed and the ability to form permanent memory representations of auditory sound bites for retrieval is dampened in dyslexic populations. Significance: To better illuminate and understand the neural mechanisms of dyslexia, specifically auditory processing, with the goal of improving outcomes in individuals with dyslexia through more efficient therapy treatment options.
ContributorsAbrams, Gabrielle Renee (Author) / Peter, Beate (Thesis advisor) / Rogalsky, Corianne (Committee member) / Rao, Aparna (Committee member) / Arizona State University (Publisher)
Created2022