This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156139-Thumbnail Image.png
Description
Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS kindreds identified an additional three mutations in MATR3; S85C, P154S

Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS kindreds identified an additional three mutations in MATR3; S85C, P154S and T622A. Matrin 3 is an RNA/DNA binding protein as well as part of the nuclear matrix. Matrin 3 interacts with TDP-43, a protein that is both mutated in some forms of ALS, and found in pathological inclusions in most ALS patients. Matrin 3 pathology, including mislocalization and rare cytoplasmic inclusions, was identified in spinal cord tissue from a patient carrying a mutation in Matrin 3, as well as sporadic ALS patients. In an effort to determine the mechanism of Matrin 3 linked ALS, the protein interactome of wild-type and ALS-linked MATR3 mutations was examined. Immunoprecipitation followed by mass spectrometry experiments were performed using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify ALS-causing mutations in the gene MATR3, as well as a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.
ContributorsBoehringer, Ashley (Author) / Bowser, Robert (Thesis advisor) / Liss, Julie (Committee member) / Jensen, Kendall (Committee member) / Ladha, Shafeeq (Committee member) / Arizona State University (Publisher)
Created2018
155402-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that affects 5.4 million Americans. AD leads to memory loss, changes in behavior, and death. The key hallmarks of the disease are amyloid plaques and tau tangles, consisting of amyloid-β oligomers and hyperphosphorylated tau, respectively.

Rho-associated, coiled-coil-containing protein kinase (ROCK) is an enzyme that plays important roles in neuronal cells including mediating actin organization and dendritic spine morphogenesis. The ROCK inhibitor Fasudil has been shown to increase learning and working memory in aged rats, but another ROCK inhibitor, Y27632, was shown to impair learning and memory. I am interested in exploring how these, and other ROCK inhibitors, may be acting mechanistically to result in very different outcomes in treated animals.

Preliminary research on thirteen different ROCK inhibitors provides evidence that while Fasudil and a novel ROCK inhibitor, T343, decrease tau phosphorylation in vitro, Y27632 increases tau phosphorylation at a low dose and decreases at a high dose. Meanwhile, novel ROCK inhibitor T299 increases tau phosphorylation at a high dosage.

Further, an in vivo study using triple transgenic AD mice provides evidence that Fasudil improves reference memory and fear memory in both transgenic and wild-type mice, while Y27632 impairs reference memory in transgenic mice. Fasudil also decreases tau phosphorylation and Aβ in vivo, while Y27632 significantly increases the p-tau to total tau ratio.
ContributorsTurk, Mari (Author) / Huentelman, Matt (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2017