This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

152705-Thumbnail Image.png
Description
Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.
ContributorsKusne, Yael (Author) / Sanai, Nader (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Tran, Nhan (Committee member) / Hammer, Ronald (Committee member) / Narayanan, Vinodh (Committee member) / Shapiro, Joan (Committee member) / Arizona State University (Publisher)
Created2014
152966-Thumbnail Image.png
Description
Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in the mPFC. Results revealed that chronic administration of the mGluR5 PAM CDPPB was able to significantly reduce the effects of chronically administered MK-801 on both behavioral perseveration and glutamate neurotransmission. Results also showed that CDPPB had no evidence of an effect on dendritic spine density or morphology, but the mGluR5 negative allosteric modulator fenobam caused significant increases in spine density and the frequency of occurrence of spines with smaller head diameters. Conclusions include that CDPPB is able to reverse MK-801 induced cognitive deficits as well as alterations in mPFC glutamate neurochemistry. The culmination of these studies add further support for targeting mGluR5 with PAMs as a novel mechanism to alleviate cognitive impairments in patients with schizophrenia.
ContributorsLaCrosse, Amber (Author) / Olive, Michael (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Sanabria, Federico (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
153409-Thumbnail Image.png
Description
Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known. EtOH has been shown to affect some nicotinic acetylcholine receptors (nAChRs), which potentially underlies NIC-EtOH codependence. Ventral Tegmental Area (VTA)

Tobacco and alcohol are the most commonly abused drugs worldwide. Many people smoke and drink together, but the mechanisms of this nicotine (NIC) -ethanol (EtOH) dependence are not fully known. EtOH has been shown to affect some nicotinic acetylcholine receptors (nAChRs), which potentially underlies NIC-EtOH codependence. Ventral Tegmental Area (VTA) dopamine (DA) and γ-aminobutyric acid (GABA) neurons express different nAChR subtypes, whose net activation results in enhancement of DA release in the Prefrontal Cortex (PFC) and Nucleus Accumbens (NAc). Enhancement of DA transmission in this mesocorticolimbic system is thought to lead to rewarding properties of EtOH and NIC, clarification of which is relevant to public health and clinical diseases. The aim of this study was to elucidate pharmacological mechanisms of action employed by both NIC and EtOH through nAChRs in VTA neurons by evaluating behavioral, network, synaptic and receptor functions therein. It was hypothesized that VTA GABA neurons are controlled by α7 nAChRs on presynaptic GLUergic terminals and α6 nAChRs on presynaptic GABAergic terminals. NIC and EtOH, via these nAChRs, modulate VTA GABA neuronal function. This modulation may underlie NIC and EtOH reward and reinforcement, while pharmacological manipulation of these nAChRs may be a therapeutic strategy to treat NIC or EtOH dependence. This data demonstrates that in VTA GABA neurons, α7 nAChRs on GLUergic terminals play a key role in the mediation of local NIC-induced firing increase. α6*-nAChRs on GABA terminals enhances presynaptic GABA release, and leads to greater inhibition to VTA GABA neurons, which results in an increase VTA DA neuron firing via a disinhibition mechanism. Genetic knockout of these nAChRs significantly prevents EtOH-induced animal conditioned place preference (CPP). Furthermore, levo-tetrahydropalmadine (l-THP), a compound purified from natural Chinese herbs, blocks nAChRs, prevents NIC-induced DA neuronal firing, and eliminates NIC CPP, suggesting it as a promising candidate in a new generation of interventions for smoking cessation. Improved understanding of underlying mechanisms and development of new drugs will increase the number of successful quitters each year and dramatically improve the quality of life for millions suffering from addiction, as well as those around them.
ContributorsTaylor, Devin (Author) / Wu, Jie (Committee member) / Olive, M F (Committee member) / Whiteaker, Paul (Committee member) / Vu, Eric (Committee member) / Hammer, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
153854-Thumbnail Image.png
Description
Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses.

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS.
ContributorsLewis, Candace (Author) / Olive, M. Foster (Thesis advisor) / Hammer, Ronald (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015