This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150197-Thumbnail Image.png
Description
Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and

Ever reducing time to market, along with short product lifetimes, has created a need to shorten the microprocessor design time. Verification of the design and its analysis are two major components of this design cycle. Design validation techniques can be broadly classified into two major categories: simulation based approaches and formal techniques. Simulation based microprocessor validation involves running millions of cycles using random or pseudo random tests and allows verification of the register transfer level (RTL) model against an architectural model, i.e., that the processor executes instructions as required. The validation effort involves model checking to a high level description or simulation of the design against the RTL implementation. Formal techniques exhaustively analyze parts of the design but, do not verify RTL against the architecture specification. The focus of this work is to implement a fully automated validation environment for a MIPS based radiation hardened microprocessor using simulation based approaches. The basic framework uses the classical validation approach in which the design to be validated is described in a Hardware Definition Language (HDL) such as VHDL or Verilog. To implement a simulation based approach a number of random or pseudo random tests are generated. The output of the HDL based design is compared against the one obtained from a "perfect" model implementing similar functionality, a mismatch in the results would thus indicate a bug in the HDL based design. Effort is made to design the environment in such a manner that it can support validation during different stages of the design cycle. The validation environment includes appropriate changes so as to support architecture changes which are introduced because of radiation hardening. The manner in which the validation environment is build is highly dependent on the specifications of the perfect model used for comparisons. This work implements the validation environment for two MIPS simulators as the reference model. Two bugs have been discovered in the RTL model, using simulation based approaches through the validation environment.
ContributorsSharma, Abhishek (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2011
153935-Thumbnail Image.png
Description
Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of radiation hardening, essentials of clock design and impact of particle strikes on clocks in detail and presents design techniques for hardening complete clock systems in digital ICs.

Since the sequential elements play a key role in deciding the robustness of any clocking strategy, hardened-by-design implementations of triple-mode redundant (TMR) pulse clocked latches and physical design methodologies for using TMR master-slave flip-flops in application specific ICs (ASICs) are proposed. A novel temporal pulse clocked latch design for low power radiation hardened applications is also proposed. Techniques for designing custom RHBD clock distribution networks (clock spines) and ASIC clock trees for a radiation hardened microprocessor using standard CAD tools are presented. A framework for analyzing the vulnerabilities of clock trees in general, and study the parameters that contribute the most to the tree’s failure, including impact on controlled latches is provided. This is then used to design an integrated temporally redundant clock tree and pulse clocked flip-flop based clocking scheme that is robust to single event transients (SETs) and single event upsets (SEUs). Subsequently, designing robust clock delay lines for use in double data rate (DDRx) memory applications is studied in detail. Several modules of the proposed radiation hardened all-digital delay locked loop are designed and studied. Many of the circuits proposed in this entire body of work have been implemented and tested on a standard low-power 90-nm process.
ContributorsChellappa, Srivatsan (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Cao, Yu (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015