This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187543-Thumbnail Image.png
Description
The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a

The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a crucial role in technology enabling. However, validation of interconnect performance becomes increasingly challenging at these higher speeds. High-speed interconnect behavior can be reliably predicted if interconnect models are successfully validated against measurements. In industry, it is still not common practice to perform validation at actual use conditions. Therefore, there is an urge for a restructured design methodology and metrology based on temperature and humidity, to set realistic specs for high speed interconnects and reduce probability of failure under variations. Uncertainty quantification and propagation for interconnect validation is critical to assess the correlation quality more objectively, as well as to determine the bottleneck to improve the accuracy, repeatability and reproducibility of all the measurements involved in validation. The purpose of this work is to create a methodology that is both academically rigorous and has a significant impact on industry. This methodology provides an accurate characterization of the electrical performance of interconnects under realistic use-conditions, accompanied by an uncertainty analysis to improve the assessment of correlation quality. Part of this work contributed to the Packaging Benchmark Suite developed by IEEE EPS technical committee on electrical design, modeling, and simulation.
ContributorsGeyik, Cemil S (Author) / Aberle, James T (Thesis advisor) / Zhang, Zhichao (Committee member) / Polka, Lesley A (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2023
161729-Thumbnail Image.png
Description
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small

Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
ContributorsBiswas, Shilpita (Author) / Christen, Jennifer B (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021