This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 31 - 40 of 78
Filtering by

Clear all filters

156961-Thumbnail Image.png
Description
The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing

The pace of exoplanet discoveries has rapidly accelerated in the past few decades and the number of planets with measured mass and radius is expected to pick up in the coming years. Many more planets with a size similar to earth are expected to be found. Currently, software for characterizing rocky planet interiors is lacking. There is no doubt that a planet’s interior plays a key role in determining surface conditions including atmosphere composition and land area. Comparing data with diagrams of mass vs. radius for terrestrial planets provides only a first-order estimate of the internal structure and composition of planets [e.g. Seager et al 2007]. This thesis will present a new Python library, ExoPlex, which has routines to create a forward model of rocky exoplanets between 0.1 and 5 Earth masses. The ExoPlex code offers users the ability to model planets of arbitrary composition of Fe-Si-Mg-Al-Ca-O in addition to a water layer. This is achieved by modeling rocky planets after the earth and other known terrestrial planets. The three distinct layers which make up the Earth's internal structure are: core, mantle, and water. Terrestrial planet cores will be dominated by iron however, like earth, there may be some quantity of light element inclusion which can serve to enhance expected core volumes. In ExoPlex, these light element inclusions are S-Si-O and are included as iron-alloys. Mantles will have a more diverse mineralogy than planet cores. Unlike most other rocky planet models, ExoPlex remains unbiased in its treatment of the mantle in terms of composition. Si-Mg-Al-Ca oxide components are combined by predicting the mantle mineralogy using a Gibbs free energy minimization software package called Perple\_X [Connolly 2009]. By allowing an arbitrary composition, ExoPlex can uniquely model planets using their host star’s composition as an indicator of planet composition. This is a proven technique [Dorn et al 2015] which has not yet been widely utilized, possibly due to the lack of availability of easy to use software. I present a model sensitivity analysis to indicate the most important parameters to constrain in future observing missions. ExoPlex is currently available on PyPI so it may be installed using pip or conda on Mac OS or Linux based operating systems. It requires a specific scripting environment which is explained in the documentation currently stored on the ExoPlex GitHub page.
ContributorsLorenzo, Alejandro M., Jr (Author) / Desch, Steven (Thesis advisor) / Shim, Dan S.-H. (Committee member) / Line, Michael (Committee member) / Li, Mingming (Committee member) / Arizona State University (Publisher)
Created2018
156967-Thumbnail Image.png
Description
This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative

This thesis contains an overview, as well as the history of optical interferometers. A new approach to interferometric measurements of stars is proposed and explored. Modern updates to the classic techniques are described along with some theoretical derivations showing why the method of single photon counting shows significant promise relative to the currently used amplitude interferometry.

Description of a modular intensity interferometer system using commercially available single-photon detectors is given. Calculations on the sensitivity and \emph{uv}-plane coverage using these modules mounted on existing telescopes on Kitt Peak, Arizona is presented.

Determining fundamental stellar properties is essential for testing models of stellar evolution as well as for deriving physical properties of transiting exoplanets. The proposed method shows great promise in measuring the angular size of stars. Simulations indicate that it is possible to measure stellar diameters of bright stars with AB magnitude <6 with a precision of >5% in a single night of observation.

Additionally, a description is given of a custom time-to-digital converter designed to time tag individual photons from multiple single-photon detectors with high count rate, continuous data logging, and low systematics. The instrument utilizes a tapped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. The TDC is implemented on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows for continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set-up to work with up to ten independent channels. Laboratory characterization of the system, including RF, pick up and mitigation, as well as measurement of in-lab photon correlations from an incoherent light source (artificial star), are presented. Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIe 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.

Furthermore, a modified nulling interferometer with image inversion is proposed, for direct imaging of exoplanets below the canonical Rayleigh resolution limit. Image inversion interferometry relies on splitting incoming radiation from a source, either spatially rotating or reflecting the electric field from one arm of the interferometer before recombining the signals and detecting the resulting images in the two output ports with an array of high-speed single-photon detectors. Sources of incoming radiation that have cylindrical symmetry and are centered on the rotation axis will cancel in one of the output ports and add in the other output port. The ability to suppress light from a host star, as well as the ability to resolve past the Rayleigh limit, enables sensitive detection of exoplanets from a stable environment without the need for a coronagraph. The expected number of photons and the corresponding variance in the measurement for different initial contrast ratios are shown, with some first-order theoretical instrumental errors.

Lastly, preliminary results from a sizeable photometric survey are presented. This survey is used to derive bolometric flux alongside from angular size measurements and the effective stellar temperatures.
ContributorsPilyavsky, Genady (Author) / Mauskopf, Philip (Thesis advisor) / Groppi, Christopher (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2018
156980-Thumbnail Image.png
Description
The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I

The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I show that variable $\alpha$(r,z) (where $r$ is radius, and $z$ is height from the midplane) attributable to angular momentum transport due to MRI can yield disks with significantly different structure, as mass piles up in the 1-10 AU region resulting in steep slopes of p $>$ 2 here (where p is the power law exponent in $\Sigma \propto r^{-p}$). I also show that the transition radius (where bulk mass flow switches from inward to outward) can move as close in as 3 AU; this effect (especially prominent in externally photoevaporated disks) may significantly influence the radial water content available during planet formation.

I then investigate the transport of water in disks with different variable α profiles. While radial temperature profile sets the location of the water snowline (i.e., inside of which water is present as vapor; outside of which, as ice on solids), it is the rates of diffusion and drift of small icy solids and diffusion of vapor across the snow line that determine the radial water distribution. All of these processes are highly sensitive to local $\alpha$. I calculate the effect of radially varying α on water transport, by tracking the abundance of vapor in the inner disk, and fraction of ice in particles and larger asteroids beyond the snow line. I find one α profile attributable to winds and hydrodynamical instabilities, and motivated by meteoritic constraints, to show considerable agreement with inferred water contents observed in solar system asteroids.

Finally, I calculate the timing of gap formation due to the formation of a planet in disks around different stars. Here, I assume that pebble accretion is the dominant mechanism for planetary growth and that the core of the first protoplanet forms at the water snow line. I discuss the dependence of gap timing to various stellar and disk properties.
ContributorsKalyaan, Anusha (Author) / Desch, Steven J (Thesis advisor) / Groppi, Christopher (Committee member) / Young, Patrick (Committee member) / Shkolnik, Evgenya (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2018
153639-Thumbnail Image.png
Description
The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along with an inferred mean radius

The Kuiper Belt Object Haumea is one of the most fascinating objects in the solar system. Spectral reflectance observations reveal a surface of almost pure water ice, yet it has a mass of 4.006 × 1021 kg, measured from orbits of its moons, along with an inferred mean radius of 715 km, and these imply a mean density of around 2600 kg m−3. Thus the surface ice must be a veneer over a rocky core. This model is supported by observations of Haumea's light curve, which shows large photometric variations over an anomalously rapid 3.9154-hour rotational period. Haumea's surface composition is uniform, therefore the light curve must be due to a varying area presented to the observer, implying that Haumea has an oblong, ellipsoidal shape. If Haumea's rotation axis is normal to our line of sight, and Haumea reflects with a lunar-like scattering function, then its axis ratios are p = b/a = 0.80 (in the equatorial cross section) and q = c/a = 0.52 (in the polar cross section). In this work, I assume that Haumea is in hydrostatic equilibrium, and I model it as a two-phase ellipsoid with an ice mantle and a rocky core. I model the core assuming it has a given density in the range between 2700–3300 kg m−3 with axis ratios that are free to vary. The metric which my code uses calculates the angle between the gravity vector and the surface normal, then averages this over both the outer surface and the core-mantle boundary. When this fit angle is minimized, it allows an interpretation of the size and shape of the core, as well as the thickness of the ice mantle. Results of my calculations show that Haumea's most likely core density is 2700–2800 kg m−3, with ice thicknesses anywhere from 12–32 km over the poles and as thin as 4–18 km over the equator.
ContributorsProbst, Luke (Author) / Desch, Steven (Thesis advisor) / Asphaug, Erik (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2015
154965-Thumbnail Image.png
Description
The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple

The work presented in this dissertation examines three different nonequilibrium particle physics processes that could play a role in answering the question “how was the particle content of today’s universe produced after the big bang?” Cosmic strings produced from spontaneous breaking of a hidden sector $U(1)_{\rm X}$ symmetry could couple to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radiate particles that contribute to the diffuse gamma ray background. In this work we calculate the properties of these strings, including finding effective couplings between the strings and Standard Model fields. Explosive particle production after inflation, known as preheating, would have produced a stochastic background of gravitational waves (GW). This work shows how the presence of realistic additional fields and interactions can affect this prediction dramatically. Specifically, it considers the inflaton to be coupled to a light scalar field, and shows that even a very small quartic self-interaction term will reduce the amplitude of the gravitational wave spectrum. For self-coupling $\lambda_{\chi} \gtrsim g^2$, where $g^2$ is the inflaton-scalar coupling, the peak energy density goes as $\Omega_{\rm GW}^{(\lambda_{\chi})} / \Omega_{\rm GW}^{(\lambda_{\chi}=0)} \sim (g^2/\lambda_{\chi})^{2}$. Finally, leptonic charge-parity (CP) violation could be an important clue to understanding the origin of our universe's matter-antimatter asymmetry, and long-baseline neutrino oscillation experiments in the coming decade may uncover this. The CP violating effects of a possible fourth ``sterile" neutrino can interfere with the usual three neutrinos; this work shows how combinations of various measurements can help break those degeneracies.
ContributorsHyde, Jeffrey Morgan (Author) / Vachaspati, Tanmay (Thesis advisor) / Easson, Damien (Committee member) / Belitsky, Andrei (Committee member) / Comfort, Joseph (Committee member) / Arizona State University (Publisher)
Created2016
155091-Thumbnail Image.png
Description
The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in kilo-pixel arrays. I present a simple, robust design for a single receiver element that can be tessellated throughout a telescope's focal plane to make a ~1000 pixel array, which is much larger than the current state-of-the-art array, SuperCam, at 64 pixels and ~345 GHz.

While the original goal to develop receiver technologies has been accomplished, the path to this accomplishment required a far more holistic approach than originally anticipated. The goal of the present work has expended exponentially from that of KAPPas promised technical achievements. In the present work, KAPPa and its extension, I present solutions ranging from 1) the creation of large scale astronomical maps, 2) metaheuristic algorithms that solve tasks too complex for humans, and 3) detailed technical assembly of microscopic circuit components. Each part is equally integral for the realization of a ~1000 pixel THz arrays.

Our automated tuning algorithm, Alice, uses differential evolution techniques and has been extremely successful in its implementation. Alice provides good results for characterizing the extremely complex tuning topology of THz receivers. More importantly, it has accomplished rapid optimization of an entire array without human intervention. In the age of big data astronomy, I have prepared THz heterodyne receiver arrays by making cutting edge community-oriented data analysis tools for the future of large-scale discovery. I present a from-scratch reduction and analysis architecture developed for observations of 100s of square degree on-the-sky maps with SuperCam to address the gulf between observing with single dish antennas versus a truly integrated focal plane array.
ContributorsWheeler, Caleb Henry, III (Author) / Groppi, Christopher E (Thesis advisor) / Butler, Nathaniel (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Mauskopf, Philip (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016
155509-Thumbnail Image.png
Description
New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity

New measurements of the Hα luminosity function (LF) and star formation rate

(SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field.

These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique

infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and

sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ).

The present sample, based on a single DAWN field, contains 116 Hα emission-

line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These

candidates have been selected through comparison of narrow and broad-band images

in the infrared and through matching with existing catalogs in the COSMOS field.

The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92

erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From

this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An

additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint

end slope and luminosity density that are derived are consistent with prior results at

similar redshifts, with reduced uncertainties.

An analysis of these Hα emitters’ sizes is also presented, showing a direct corre-

lation between the galaxies’ sizes and their Hα emission.
ContributorsGonzalez, Alicia (Author) / Rhoads, James E (Thesis advisor) / Malhotra, Sangeeta (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2017
Description
The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the

The lowest-mass stars, known as M-dwarfs, form target samples for upcoming exoplanet searches, and together with lower-mass substellar objects known as brown dwarfs, are among prime targets for detailed study with high-contrast adaptive optics (AO) imaging and sub-millimeter interferometry. In this thesis, I describe results from three studies investigating the companion properties and environments of low-mass systems: (1) The 245-star M-dwarfs in Multiples (MinMs) Survey, a volume-limited survey of field M-dwarf companions within 15 pc, (2) the Taurus Boundary of Stellar/Substellar (TBOSS) Survey, an ongoing study of disk properties for low-mass members within the Taurus star-forming region, and (3) spectroscopy of a brown dwarf companion using the Gemini Planet Imager (GPI).

Direct imaging of M-dwarfs is a sensitive technique to identify low-mass companions over a wide range of orbital separation, and the high proper motion of nearby M-dwarfs eases confirmation of new multiple stars. Combining AO and wide-field imaging, the MinMs Survey provides new measurements of the companion star fraction (CSF), separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs. These results demonstrate the closer orbital separations (~6 AU) and lower frequency (~23% CSF) of M-dwarf binaries relative to higher-mass stars.

From the TBOSS project, I report 885µm Atacama Large Millimeter/sub-millimeter Array continuum measurements for 24 Taurus members spanning the stellar/substellar boundary (M4-M7.75). Observations of submillimeter emission from dust grains around the lowest-mass hosts show decreasing disk dust mass for decreasing host star mass, consistent with low frequencies of giant planets around M-dwarfs. Compared to the older stellar association of Upper Scorpius, Taurus disks have a factor of four higher mass in submillimeter-sized grains.

From the GPI Exoplanet Survey, I describe near-infrared spectroscopy of an unusually red companion orbiting inside the debris disk of an F5V star. As the second brown dwarf discovered within the innermost region of a debris disk, the properties of this system offer important dynamical constraints for companion-disk interaction and a useful benchmark for brown dwarf and giant planet atmospheric study.
ContributorsWard-Duong, Kimberly Dolan (Author) / Patience, Jennifer (Thesis advisor) / Young, Patrick (Committee member) / Butler, Nathaniel (Committee member) / Bowman, Judd (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2017
155787-Thumbnail Image.png
Description
Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has shown that a promising method for directly measuring this energy

Galaxy formation is a complex process with aspects that are still very uncertain or unknown. A mechanism that has been utilized in simulations to successfully resolve several of these outstanding issues is active galactic nucleus (AGN) feedback. Recent work has shown that a promising method for directly measuring this energy is by looking at small increases in the energy of cosmic microwave background (CMB) photons as they pass through ionized gas, known as the thermal Sunyaev-Zel’dovich (tSZ) effect.

In this work, I present stacked CMB measurements of a large number of elliptical galaxies never before measured using this method. I split the galaxies into two redshift groups, "low-z" for z=0.5-1.0 and “high-z” for z=1.0-1.5. I make two independent sets of CMB measurements using data from the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), respectively, and I use data from the Planck telescope to account for contamination from dust emission. With SPT I find average thermal energies of 7.6(+3.0/−2.3) × 10^60 erg for 937 low-z galaxies, and 6.0(+7.7/−6.3) × 10^60 erg for 240 high-z galaxies. With ACT I find average thermal energies of 5.6(+5.9/−5.6) × 10^60 erg for 227 low-z galaxies, and 7.0(+4.7/−4.4) × 10^60 erg for 529 high-z galaxies.

I then attempt to further interpret the physical meaning of my observational results by incorporating two large-scale cosmological hydrodynamical simulations, one with (Horizon-AGN) and one without (Horizon-NoAGN) AGN feedback. I extract simulated tSZ measurements around a population of galaxies equivalent to those used in my observational work, with matching mass distributions, and compare the results. I find that the SPT measurements are consistent with Horizon-AGN, falling within 0.4σ at low-z and 0.5σ at high-z, while the ACT measurements are very different from Horizon-AGN, off by 6.9σ at low-z and 14.6σ at high-z. Additionally, the SPT measurements are loosely inconsistent with Horizon-NoAGN, off by 1.8σ at low-z but within 0.6σ at high-z, while the ACT measurements are loosely consistent with Horizon-NoAGN (at least much more so than with Horizon-AGN), falling within 0.8σ at low-z but off by 1.9σ at high-z.
ContributorsSpacek, Alexander Edward (Author) / Scannapieco, Evan (Thesis advisor) / Bowman, Judd (Committee member) / Butler, Nat (Committee member) / Groppi, Chris (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2017
155904-Thumbnail Image.png
Description
The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr).

The interaction of the 21

The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr).

The interaction of the 21 cm hyperfine ground state emission/absorption-line of HI with the cosmic microwave background (CMB) and the radiation from the first luminous sources in the universe can be used to extract cosmological information about the EoR. Theorists have created global redshifted 21 cm EoR models of this interaction that predict the temperature perturbations to the CMB in the form of a sky-averaged difference temperature, Tb. The difficulty in measuring Tb is that it is

predicted to be on the order of 20 to 100 mK, while the sky foreground is dominated

by synchrotron radiation that is 105 times brighter. The challenge is to subtract the much brighter foreground radiation without subtracting the Tb signal and can only be done when the data has small error levels.

The Experiment to Detect the Global EoR Signature (EDGES) is an effort to measure Tb with a single wide field-of-view well-calibrated antenna. This dissertation focuses on reducing systematic errors by quantifying the impact of the chromatic nature of the antenna’s beam directivity and by measuring the variability of the spectral index of the radio sky foreground. The chromatic beam study quantified the superior qualities of the rectangular blade-shaped antenna and led to its adoption over the previously used fourpoint-shaped antenna and determined that a 5 term polynomial was optimum for removing the foreground. The spectral index, β, of the sky was measured, using 211 nights of data, to be −2.60 > β > −2.62 in lower LST regions, increasing to −2.50 near the Galactic plane. This matched simulated results using the Guzm´an et al. (2011) sky map (∆β < 0.05) and demonstrated the exceptional stability of the EDGES instrument. Lastly, an EoR model by Kaurov & Gnedin (2016) was shown to be inconsistent with measured EDGES data at a significance level of 1.9.
ContributorsMozdzen, Thomas J (Author) / Bowman, Judd D (Thesis advisor) / Scowen, Paul A (Committee member) / Groppi, Christopher E (Committee member) / Scannapieco, Evan (Committee member) / Windhorst, Rogier A (Committee member) / Arizona State University (Publisher)
Created2017