This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155667-Thumbnail Image.png
Description
The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric Motor (EM). The first strategy uses a rule based controller

The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric Motor (EM). The first strategy uses a rule based controller to determine modes the vehicle should operate in. This approach is well suited for real-world applications. The second approach uses Sequential Quadratic Programming (SQP) approach in conjunction with an Equivalent Consumption Minimization Strategy (ECMS) strategy to keep the vehicle in the most efficient operating regions. This latter method is able to operate the vehicle in various drive cycles while maintaining the SOC with-in allowed charge sustaining (CS) limits. Further, the overall efficiency of the vehicle for all drive cycles is increased. The limitation here is the that process is computationally expensive; however, with advent of the low cost high performance hardware this method can be used for the hybrid vehicle control.
ContributorsMaady, Rashad Kamal (Author) / Redkar, Sangram (Thesis advisor) / Mayyas, Abdel R (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2017
158308-Thumbnail Image.png
Description
In large modern urban areas, traffic congestion and fatality have become two serious problems. To improve the safety and efficiency of ground mobility, one promising solution is the cooperative control of connected and automated vehicle (CAV) systems, which can avoid human drivers’ incapability and errors. Taking advantage of two-dimensional (2D)

In large modern urban areas, traffic congestion and fatality have become two serious problems. To improve the safety and efficiency of ground mobility, one promising solution is the cooperative control of connected and automated vehicle (CAV) systems, which can avoid human drivers’ incapability and errors. Taking advantage of two-dimensional (2D) vehicular control, this dissertation intends to conduct a thorough investigation of the modeling, control, and optimization of CAV systems with flocking control. Flocking is a dynamic swarm congregating behavior of a group of agents with self-organizing features, and flocking control of CAV systems attempts to achieve the maintenance of a small and nearly constant distance among vehicles, speed match, destination cohesion, and collision and obstacle avoidance.

Concerning artificial multi-agent systems, such as mobile robots and CAV systems, a set of engineering performance requirements should be considered in flocking theory for practical applications. In this dissertation, three novel flocking control protocols are studied, which consider convergence speed, permanent obstacle avoidance, and energy efficiency. Furthermore, considering nonlinear vehicle dynamics, a novel hierarchical flocking control framework is proposed for CAV systems to integrate high-level flocking coordination planning and low-level vehicle dynamics control together. On one hand, using 2D flocking theory, the decision making and motion planning of engaged vehicles are produced in a distributed manner based on shared information. On the other hand, using the proposed framework, many advanced vehicle dynamics control methods and tools are applicable. For instance, in the low-level vehicle dynamics control, in addition to path trajectory tracking, the maintenance of vehicle later/yaw stability and rollover propensity mitigation are achieved by using additional actuators, such as all-wheel driving and four-wheel steering, to enhance vehicle safety and efficiency with over-actuated features.

Co-simulations using MATLAB/Simulink and CarSim are conducted to illustrate the performances of the proposed flocking framework and all controller designs proposed in this dissertation. Moreover, a scaled CAV system is developed, and field experiments are also completed to further demonstrate the feasibility of the proposed flocking framework. Consequently, the proposed flocking framework can successfully complete a 2D vehicular flocking coordination. The novel flocking control protocols are also able to accommodate the practical requirements of artificial multi-agent systems by enhancing convergence speed, saving energy consumption, and avoiding permanent obstacles. In addition, employing the proposed control methods, vehicle stability is guaranteed as expected.
ContributorsWang, Fengchen (Author) / Chen, Yan (Thesis advisor) / Nam, Changho (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2020