This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

187412-Thumbnail Image.png
Description
It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives

It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives a seed awn to bury itself like a corkscrew, while sandfish skinks use undulatory swimming, which can be thought of as a 2D version of helical motion. Studying burrowing behavior aims to understand how animals navigate underground, whether in their natural burrows or underground habitats, and to implement this knowledge in solving geotechnical penetration problems. Underground horizontal burrowing is challenging due to overcoming the resistance of interaction forces of granular media to move forward. Inspired by the burrowing behavior of seed-awn and sandfish skink, a horizontal self-burrowing robot is developed. The robot is driven by two augers and stabilized by a fin structure. The robot’s burrowing behavior is studied in a laboratory setting. It is found that rotation and propulsive motion along the axis of the auger’s helical shape significantly reduce granular media’s resistance against horizontal penetration by breaking kinematic symmetry or granular media boundary. Additional thrusting and dragging tests were performed to examine the propulsive and resistive forces and unify the observed burrowing behaviors. The tests revealed that the rotation of an auger not only reduces the resistive force and generates a propulsive force, which is influenced by the auger geometry, rotational speed, and direction. As a result, the burrowing behavior of the robot can be predicted using the geometry-rotation-force relations.
ContributorsShaharear, Md Ragib (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023
158843-Thumbnail Image.png
Description
Autonomous Vehicles (AVs), or self-driving cars, are poised to have an enormous impact on the automotive industry and road transportation. While advances have been made towards the development of safe, competent autonomous vehicles, there has been inadequate attention to the control of autonomous vehicles in unanticipated situations, such as imminent

Autonomous Vehicles (AVs), or self-driving cars, are poised to have an enormous impact on the automotive industry and road transportation. While advances have been made towards the development of safe, competent autonomous vehicles, there has been inadequate attention to the control of autonomous vehicles in unanticipated situations, such as imminent crashes. Even if autonomous vehicles follow all safety measures, accidents are inevitable, and humans must trust autonomous vehicles to respond appropriately in such scenarios. It is not plausible to program autonomous vehicles with a set of rules to tackle every possible crash scenario. Instead, a possible approach is to align their decision-making capabilities with the moral priorities, values, and social motivations of trustworthy human drivers.Toward this end, this thesis contributes a simulation framework for collecting, analyzing, and replicating human driving behaviors in a variety of scenarios, including imminent crashes. Four driving scenarios in an urban traffic environment were designed in the CARLA driving simulator platform, in which simulated cars can either drive autonomously or be driven by a user via a steering wheel and pedals. These included three unavoidable crash scenarios, representing classic trolley-problem ethical dilemmas, and a scenario in which a car must be driven through a school zone, in order to examine driver prioritization of reaching a destination versus ensuring safety. Sample human driving data in CARLA was logged from the simulated car’s sensors, including the LiDAR, IMU and camera. In order to reproduce human driving behaviors in a simulated vehicle, it is necessary for the AV to be able to identify objects in the environment and evaluate the volume of their bounding boxes for prediction and planning. An object detection method was used that processes LiDAR point cloud data using the PointNet neural network architecture, analyzes RGB images via transfer learning using the Xception convolutional neural network architecture, and fuses the outputs of these two networks. This method was trained and tested on both the KITTI Vision Benchmark Suite dataset and a virtual dataset exclusively generated from CARLA. When applied to the KITTI dataset, the object detection method achieved an average classification accuracy of 96.72% and an average Intersection over Union (IoU) of 0.72, where the IoU metric compares predicted bounding boxes to those used for training.
ContributorsGovada, Yashaswy (Author) / Berman, Spring (Thesis advisor) / Johnson, Kathryn (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
190725-Thumbnail Image.png
Description
Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated

Tire blowout often occurs during driving, which can suddenly disturb vehicle motions and seriously threaten road safety. Currently, there is still a lack of effective methods to mitigate tire blowout risks in everyday traffic, even for automated vehicles. To fundamentally study and systematically resolve the tire blowout issue for automated vehicles, a collaborative project between General Motors (GM) and Arizona State University (ASU) has been conducted since 2018. In this dissertation, three main contributions of this project will be presented. First, to explore vehicle dynamics with tire blowout impacts and establish an effective simulation platform for close-loop control performance evaluation, high-fidelity tire blowout models are thoroughly developed by explicitly considering important vehicle parameters and variables. Second, since human cooperation is required to control Level 2/3 partially automated vehicles (PAVs), novel shared steering control schemes are specifically proposed for tire blowout to ensure safe vehicle stabilization via cooperative driving. Third, for Level 4/5 highly automated vehicles (HAVs) without human control, the development of control-oriented vehicle models, controllability study, and automatic control designs are performed based on impulsive differential systems (IDS) theories. Co-simulations Matlab/Simulink® and CarSim® are conducted to validate performances of all models and control designs proposed in this dissertation. Moreover, a scaled test vehicle at ASU and a full-size test vehicle at GM are well instrumented for data collection and control implementation. Various tire blowout experiments for different scenarios are conducted for more rigorous validations. Consequently, the proposed high-fidelity tire blowout models can correctly and more accurately describe vehicle motions upon tire blowout. The developed shared steering control schemes for PAVs and automatic control designs for HAVs can effectively stabilize a vehicle to maintain path following performance in the driving lane after tire blowout. In addition to new research findings and developments in this dissertation, a pending patent for tire blowout detection is also generated in the tire blowout project. The obtained research results have attracted interest from automotive manufacturers and could have a significant impact on driving safety enhancement for automated vehicles upon tire blowout.
ContributorsLi, Ao (Author) / Chen, Yan (Thesis advisor) / Berman, Spring (Committee member) / Kannan, Arunachala Mada (Committee member) / Liu, Yongming (Committee member) / Lin, Wen-Chiao (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023