This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
187412-Thumbnail Image.png
Description
It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives

It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives a seed awn to bury itself like a corkscrew, while sandfish skinks use undulatory swimming, which can be thought of as a 2D version of helical motion. Studying burrowing behavior aims to understand how animals navigate underground, whether in their natural burrows or underground habitats, and to implement this knowledge in solving geotechnical penetration problems. Underground horizontal burrowing is challenging due to overcoming the resistance of interaction forces of granular media to move forward. Inspired by the burrowing behavior of seed-awn and sandfish skink, a horizontal self-burrowing robot is developed. The robot is driven by two augers and stabilized by a fin structure. The robot’s burrowing behavior is studied in a laboratory setting. It is found that rotation and propulsive motion along the axis of the auger’s helical shape significantly reduce granular media’s resistance against horizontal penetration by breaking kinematic symmetry or granular media boundary. Additional thrusting and dragging tests were performed to examine the propulsive and resistive forces and unify the observed burrowing behaviors. The tests revealed that the rotation of an auger not only reduces the resistive force and generates a propulsive force, which is influenced by the auger geometry, rotational speed, and direction. As a result, the burrowing behavior of the robot can be predicted using the geometry-rotation-force relations.
ContributorsShaharear, Md Ragib (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2023