This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150573-Thumbnail Image.png
Description
This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The

This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The purpose for conducting this research is to ensure that the correct Ferrite-Austenite phase balance along with the correct welding procedures are used in the creation of reactor cores for new construction nuclear power generation stations. In this project the effects of Lincoln Electrics ER-2209 GMAW wire are studied. Suggestions and improvements to the welding process are then proposed in order to increase the weldability, strength, gas selection, and ferrite count. The weldability will be measured using X-Ray photography in order to determine if any inclusions, lack of fusion, or voids are found post welding, along with welder feedback. The ferritic point count method in accordance with ASTM A562-08, is employed so that the amount of ferrite and austenite can be calculated in the same manor that is currently being used in industry. These will then be correlated to the tensile strength and impact toughness in the heat-affected zone (HAZ) of the weld based on the ASTM A923 testing method.
ContributorsCarter, Roger (Author) / Rogers, Bradley (Thesis advisor) / Gintz, Jerry (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2012
157921-Thumbnail Image.png
Description
It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks

It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation.
ContributorsWASWA, PETER (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2019