This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 428
Filtering by

Clear all filters

152023-Thumbnail Image.png
Description
Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with the acquisition, progressive ratio, and binge paradigms during self-administration. With BDNF overexpression in the ventral tegmental area (VTA), single social defeat stress-induced cross-sensitization to amphetamine (AMPH) was significantly potentiated. VTA-BDNF overexpression also facilitates acquisition of cocaine self-administration, and a positive correlation between the level of VTA BDNF and drug intake during 12 hour binge was observed. We also found significant increase of DeltaFosB expression in the nucleus accumbens (NAc), the projection area of the VTA, in rats received intra-VTA BDNF overexpression. We therefore examined whether BDNF signaling in the NAc is important for social defeat stress-induced cross-sensitization by knockdown of the receptor of BDNF (neurotrophin tyrosine kinase receptor type 2, TrkB) there. NAc TrkB knockdown prevented social defeat stress-induced cross-sensitization to psychostimulant. Also social defeat stress-induced increase of DeltaFosB in the NAc was prevented by TrkB knockdown. Several other factors up-regulated by stress, such as the GluA1 subunit of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and BDNF in the VTA were also prevented. We conclude that BDNF signaling in the VTA increases social defeat stress-induced vulnerability to psychostimulants, manifested as potentiated cross-sensitization/sensitization to AMPH and escalation of cocaine self-administration. Also BDNF signaling in the NAc is necessary for the stress-induced neuroadaptation and behavioral sensitization to psychostimulants. Therefore, TrkB in the NAc could be a therapeutic target to prevent stress-induced vulnerability to drugs of abuse in the future. DeltaFosB in the NAc shell could be a neural substrate underlying persistent cross-sensitization and augmented cocaine self-administration induced by social defeat stress.
ContributorsWang, Junshi (Author) / Hammer, Ronald (Thesis advisor) / Feuerstein, Burt (Committee member) / Nikulina, Ella (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
152029-Thumbnail Image.png
Description
Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative

Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. We describe the establishment of primary dermal fibroblasts cells lines from 28 autopsy donors. These fibroblasts were used to examine the proliferative effects of establishment protocol, tissue amount, biopsy site, and donor age. As proof-of-principle, iPSCs were generated from fibroblasts from a 75-year-old male, whole body donor, defined as an unaffected neurological control by both clinical and histopathological criteria. To our knowledge, this is the first study describing autopsy donor-derived somatic cells being used for iPSC generation and subsequent neural differentiation. This unique approach also enables us to compare iPSC-derived cell cultures to endogenous tissues from the same donor. We utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, supported by (i) a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain, (ii) an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue, and (iii) a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. These studies support the utility of autopsy donors' somatic cells for iPSC-based neurological disease models, and provide evidence that in vitro neural differentiation can result in physiologically progression.
ContributorsHjelm, Brooke E (Author) / Craig, David W. (Thesis advisor) / Wilson-Rawls, Norma J. (Thesis advisor) / Huentelman, Matthew J. (Committee member) / Mason, Hugh S. (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2013
152034-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively

Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively unfolded protein, amyloid-beta can misfold and aggregate generating a variety of different species including numerous different soluble oligomeric species some of which are precursors to the neurofibrillary plaques. Various of the soluble amyloid-beta oligomeric species have been shown to be toxic to cells and their presence may correlate with progression of AD. Current treatment options target the dementia symptoms, but there is no effective cure or alternative to delay the progression of the disease once it occurs. Amyloid-beta aggregates show up many years before symptoms develop, so detection of various amyloid-beta aggregate species has great promise as an early biomarker for AD. Therefore reagents that can selectively identify key early oligomeric amyloid-beta species have value both as potential diagnostics for early detection of AD and as well as therapeutics that selectively target only the toxic amyloid-beta aggregate species. Earlier work in the lab includes development of several different single chain antibody fragments (scFvs) against different oligomeric amyloid-beta species. This includes isolation of C6 scFv against human AD brain derived oligomeric amyloid-beta (Kasturirangan et al., 2013). This thesis furthers research in this direction by improving the yields and investigating the specificity of modified C6 scFv as a diagnostic for AD. It is motivated by experiments reporting low yields of the C6 scFv. We also used the C6T scFv to characterize the variation in concentration of this particular oligomeric amyloid-beta species with age in a triple transgenic AD mouse model. We also show that C6T can be used to differentiate between post-mortem human AD, Parkinson's disease (PD) and healthy human brain samples. These results indicate that C6T has potential value as a diagnostic tool for early detection of AD.
ContributorsVenkataraman, Lalitha (Author) / Sierks, Michael (Thesis advisor) / Rege, Kaushal (Committee member) / Pauken, Christine (Committee member) / Arizona State University (Publisher)
Created2013
152036-Thumbnail Image.png
Description
It is commonly known that the left hemisphere of the brain is more efficient in the processing of verbal information, compared to the right hemisphere. One proposal suggests that hemispheric asymmetries in verbal processing are due in part to the efficient use of top-down mechanisms by the left hemisphere. Most

It is commonly known that the left hemisphere of the brain is more efficient in the processing of verbal information, compared to the right hemisphere. One proposal suggests that hemispheric asymmetries in verbal processing are due in part to the efficient use of top-down mechanisms by the left hemisphere. Most evidence for this comes from hemispheric semantic priming, though fewer studies have investigated verbal memory in the cerebral hemispheres. The goal of the current investigations is to examine how top-down mechanisms influence hemispheric asymmetries in verbal memory, and determine the specific nature of hypothesized top-down mechanisms. Five experiments were conducted to explore the influence of top-down mechanisms on hemispheric asymmetries in verbal memory. Experiments 1 and 2 used item-method directed forgetting to examine maintenance and inhibition mechanisms. In Experiment 1, participants were cued to remember or forget certain words, and cues were presented simultaneously or after the presentation of target words. In Experiment 2, participants were cued again to remember or forget words, but each word was repeated once or four times. Experiments 3 and 4 examined the influence of cognitive load on hemispheric asymmetries in true and false memory. In Experiment 3, cognitive load was imposed during memory encoding, while in Experiment 4, cognitive load was imposed during memory retrieval. Finally, Experiment 5 investigated the association between controlled processing in hemispheric semantic priming, and top-down mechanisms used for hemispheric verbal memory. Across all experiments, divided visual field presentation was used to probe verbal memory in the cerebral hemispheres. Results from all experiments revealed several important findings. First, top-down mechanisms used by the LH primarily used to facilitate verbal processing, but also operate in a domain general manner in the face of increasing processing demands. Second, evidence indicates that the RH uses top-down mechanisms minimally, and processes verbal information in a more bottom-up manner. These data help clarify the nature of top-down mechanisms used in hemispheric memory and language processing, and build upon current theories that attempt to explain hemispheric asymmetries in language processing.
ContributorsTat, Michael J (Author) / Azuma, Tamiko (Thesis advisor) / Goldinger, Stephen D (Committee member) / Liss, Julie M (Committee member) / Arizona State University (Publisher)
Created2013
151887-Thumbnail Image.png
Description
Research examining the long-term impacts of federal interventions under the Civil Rights of Institutionalized Persons Act on correctional institutions has been scant. The result has been a failure to understand the sustainability of reforms aimed at protecting the civil rights of confined persons. This dissertation examined the long-term reforms at

Research examining the long-term impacts of federal interventions under the Civil Rights of Institutionalized Persons Act on correctional institutions has been scant. The result has been a failure to understand the sustainability of reforms aimed at protecting the civil rights of confined persons. This dissertation examined the long-term reforms at the Arizona Department of Juvenile Corrections following a consent decree with the U.S. Department of Justice from 2004 to 2007. Interviews were conducted with current and former ADJC employees, juvenile justice advocates across Arizona, and county court representatives to determine how each of these groups perceived the status of the reforms at the ADJC. The findings of the current dissertation suggest that long-term reforms following consent decrees imposed on correctional institutions are possible. At the ADJC, the methods for securing the reform required that the agency reform its culture, implement a Quality Assurance process, revamp the Investigations and Inspections unit at the agency, and consider the perspectives of external agencies. One of the primary reasons why the department has been committed to making these reforms is because of the perceived loss of legitimacy and resources that would occur if they failed to reform. Such a failure for the agency could have potentially resulted in a closure of the agency. However, the increase in punitive and preventive policies used to enforce the reforms may have negative repercussions on the organizational culture in the long term. Policy implications for future CRIPA consent decrees are outlined, limitations are addressed, and suggestions for future research are made.
ContributorsTaylor, Melanie Ann (Author) / Decker, Scott H. (Thesis advisor) / Katz, Charles M. (Committee member) / Fox, Kathleen (Committee member) / Arizona State University (Publisher)
Created2013
151888-Thumbnail Image.png
Description
Knowing that disorder is related to crime, it has become essential for criminologists to understand how and why certain individuals perceive disorder. Using data from the Perceptions of Neighborhood Disorder and Interpersonal Conflict Project, this study uses a fixed photograph of a neighborhood, to assess whether individuals "see" disorder cues.

Knowing that disorder is related to crime, it has become essential for criminologists to understand how and why certain individuals perceive disorder. Using data from the Perceptions of Neighborhood Disorder and Interpersonal Conflict Project, this study uses a fixed photograph of a neighborhood, to assess whether individuals "see" disorder cues. A final sample size of n=815 respondents were asked to indicate if they saw particular disorder cues in the photograph. The results show that certain personal characteristics do predict whether an individual sees disorder. Because of the experimental design, results are a product of the individual's personal characteristics, not of the respondent's neighborhood. These findings suggest that the perception of disorder is not as clear cut as once thought. Future research should explore what about these personal characteristics foster the perception of disorder when it is not present, as well as, how to fight disorder in neighborhoods when perception plays such a substantial role.
ContributorsScott, Christopher (Author) / Wallace, Danielle (Thesis advisor) / Katz, Charles (Committee member) / Ready, Justin (Committee member) / Arizona State University (Publisher)
Created2013
151707-Thumbnail Image.png
Description
Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the visual system via coherent motion has yet to be experimentally

Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the visual system via coherent motion has yet to be experimentally determined. Furthermore, the effects of coherent motion training on reading comprehension, in clinical and normal populations, are still nascent. In the present study, 20 participants were randomly assigned to one of four experimental conditions. Two conditions had a participation requirement of four days while two conditions required eight days of participation. These conditions were further divided into 500 or 1000 trials per day (4 x 500, 4 x 1000, 8 x 500, 8 x 1000). Additional pre-test and post-test days were used to attain timed pre- and post-tests on the Wide Range Achievement Test IV (WRAT IV) reading comprehension battery. Furthermore, a critical flicker fusion threshold (CFFT) score was taken on a macular pigment densitometer on the pre-test and post-test day. Participants showed significant improvement in CFFT levels, WRAT IV reading comprehension, and speed of completion between pre-test and post-test; however, degree of improvement did not vary as a function of training condition. An interaction between training condition and degree of improvement was evident in coherent dot motion contrast scores, with significant training plasticity occurring in the 4 x 1000 and 8 x 500 conditions.
ContributorsGroth, Anthony (Author) / Náñez, José E. (Thesis advisor) / Hall, Deborah (Committee member) / Risko, Evan F. (Committee member) / Arizona State University (Publisher)
Created2013
152186-Thumbnail Image.png
Description
Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic

Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function.
ContributorsHutchinson, Katie Marie (Author) / Duch, Carsten (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newfeld, Stuart (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
152152-Thumbnail Image.png
Description
The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I

The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I utilize Sam Harris's The Moral Landscape, a general audience science book on the particularly thorny topic of neuroscientific approaches to morality, as a case-study to explore the possibility of using general audience science books as models for science communication more broadly. I conduct a literary analysis of the text that delimits the scope of its project, its intended audience, and the domains of science to be communicated. I also identify seven literary aspects of the text: three positive aspects that facilitate clarity and four negative aspects that interfere with lay public engagement. I conclude that The Moral Landscape relies on an assumed knowledge base and intuitions of its audience that cannot reasonably be expected of lay audiences; therefore, it cannot properly be construed as popular science communication. It nevertheless contains normative lessons for the broader science project, both in literary aspects to be salvaged and literary aspects and concepts to consciously be avoided and combated. I note that The Moral Landscape's failings can also be taken as an indication that typical descriptions of science communication offer under-detailed taxonomies of both audiences for science communication and the varieties of science communication aimed at those audiences. Future directions of study include rethinking appropriate target audiences for science literacy projects and developing a more discriminating taxonomy of both science communication and lay publics.
ContributorsJohnson, Nathan W (Author) / Robert, Jason S (Thesis advisor) / Creath, Richard (Committee member) / Martinez, Jacqueline (Committee member) / Sylvester, Edward (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2013
Description
ABSTRACT Research on self-control theory (Gottfredson & Hirschi, 1990) consistently supports its' central proposition that low self-control significantly affects crime. The theory includes other predictions, which have received far less empirical scrutiny. Among these is the argument that self-control is developed early in childhood and that individual differences then persist

ABSTRACT Research on self-control theory (Gottfredson & Hirschi, 1990) consistently supports its' central proposition that low self-control significantly affects crime. The theory includes other predictions, which have received far less empirical scrutiny. Among these is the argument that self-control is developed early in childhood and that individual differences then persist over time. Gottfredson and Hirschi contend that once established by age ten, self-control remains relatively stable over one's life-course (stability postulate). To determine the empirical status of Gottfredson and Hirschi's "stability postulate," a meta-analysis on existing empirical studies was conducted. Results for this study support the contentions made by Gottfredson and Hirschi, however the inclusion of various moderating variables significantly influenced this relationship. Keywords: self-control, self-control stability, absolute stability, relative stability
ContributorsMeyers, Travis J (Author) / Pratt, Travis (Thesis advisor) / Burt, Callie (Committee member) / Wright, Kevin (Committee member) / Arizona State University (Publisher)
Created2013