This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171508-Thumbnail Image.png
Description
Longitudinal data involving multiple subjects is quite popular in medical and social science areas. I consider generalized linear mixed models (GLMMs) applied to such longitudinal data, and the optimal design searching problem under such models. In this case, based on optimal design theory, the optimality criteria depend on the estimated

Longitudinal data involving multiple subjects is quite popular in medical and social science areas. I consider generalized linear mixed models (GLMMs) applied to such longitudinal data, and the optimal design searching problem under such models. In this case, based on optimal design theory, the optimality criteria depend on the estimated parameters, which leads to local optimality. Moreover, the information matrix under a GLMM doesn't have a closed-form expression. My dissertation includes three topics related to this design problem. The first part is searching for locally optimal designs under GLMMs with longitudinal data. I apply penalized quasi-likelihood (PQL) method to approximate the information matrix and compare several approximations to show the superiority of PQL over other approximations. Under different local parameters and design restrictions, locally D- and A- optimal designs are constructed based on the approximation. An interesting finding is that locally optimal designs sometimes apply different designs to different subjects. Finally, the robustness of these locally optimal designs is discussed. In the second part, an unknown observational covariate is added to the previous model. With an unknown observational variable in the experiment, expected optimality criteria are considered. Under different assumptions of the unknown variable and parameter settings, locally optimal designs are constructed and discussed. In the last part, Bayesian optimal designs are considered under logistic mixed models. Considering different priors of the local parameters, Bayesian optimal designs are generated. Bayesian design under such a model is usually expensive in time. The running time in this dissertation is optimized to an acceptable amount with accurate results. I also discuss the robustness of these Bayesian optimal designs, which is the motivation of applying such an approach.
ContributorsShi, Yao (Author) / Stufken, John (Thesis advisor) / Kao, Ming-Hung (Thesis advisor) / Lan, Shiwei (Committee member) / Pan, Rong (Committee member) / Reiser, Mark (Committee member) / Arizona State University (Publisher)
Created2022
171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems.

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
ContributorsMartinez Rivera, Wilmer Osvaldo (Author) / Fricks, John (Thesis advisor) / Reiser, Mark (Committee member) / Zhou, Shuang (Committee member) / Cheng, Dan (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2022
161250-Thumbnail Image.png
Description
Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport

Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport by recording multi-dimensional, discrete cargo position trajectories over time. However, due to experimental limitations, much of the mechanochemical process cannot be directly observed, making mathematical modeling and statistical inference an essential tool for identifying the underlying mechanisms. The cargo movement during transport is modeled using a switching stochastic differential equation framework that involves classification into one of three proposed hidden regimes. Each regime is characterized by different levels of velocity and stochasticity. The equations are presented as a state-space model with Markovian properties. Through a stochastic expectation-maximization algorithm, statistical inference can be made based on the observed trajectory. Regime predictions and particle location predictions are calculated through an auxiliary particle filter and particle smoother. Based on these predictions, parameters are estimated through maximum likelihood. Diagnostics are proposed that can assess model performance and therefore also be a form of model selection criteria. Model selection is used to find the most accurate regime models and the optimal number of regimes for a certain motor-cargo system. A method for incorporating a second positional dimension is also introduced. These methods are tested on both simulated data and different types of experimental data.
ContributorsCrow, Lauren (Author) / Fricks, John (Thesis advisor) / McKinley, Scott (Committee member) / Hahn, Paul R (Committee member) / Reiser, Mark (Committee member) / Cheng, Dan (Committee member) / Arizona State University (Publisher)
Created2021