This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151976-Thumbnail Image.png
Description
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs

Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
ContributorsIsmay, Chester (Author) / Eubank, Randall (Thesis advisor) / Young, Dennis (Committee member) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
149960-Thumbnail Image.png
Description
By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random

By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random variables, then with probability one, both players have unique optimal mixed strategies utilizing the same number of pure strategies with positive probability (Jonasson 2004). The pure strategies with positive probability in the unique optimal mixed strategies are called saddle squares. In 1957, Goldman evaluated the probability of a saddle point (a 1 by 1 saddle square), which was rediscovered by many authors including Thorp (1979). Thorp gave two proofs of the probability of a saddle point, one using combinatorics and one using a beta integral. In 1965, Falk and Thrall investigated the integrals required for the probabilities of a 2 by 2 saddle square for 2 × n and m × 2 games with iid uniform (0,1) payoffs, but they were not able to evaluate the integrals. This dissertation generalizes Thorp's beta integral proof of Goldman's probability of a saddle point, establishing an integral formula for the probability that a m × n game with iid uniform (0,1) payoffs has a k by k saddle square (k ≤ m,n). Additionally, the probabilities of a 2 by 2 and a 3 by 3 saddle square for a 3 × 3 game with iid uniform(0,1) payoffs are found. For these, the 14 integrals observed by Falk and Thrall are dissected into 38 disjoint domains, and the integrals are evaluated using the basic properties of the dilogarithm function. The final results for the probabilities of a 2 by 2 and a 3 by 3 saddle square in a 3 × 3 game are linear combinations of 1, π2, and ln(2) with rational coefficients.
ContributorsManley, Michael (Author) / Kadell, Kevin W. J. (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lanchier, Nicolas (Committee member) / Lohr, Sharon (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2011
158387-Thumbnail Image.png
Description
Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from projected when they are sold. From an

insurer’s portfolio perspective, to

Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from projected when they are sold. From an

insurer’s portfolio perspective, to curb this risk, it is imperative that models of hu

man survivorship are constantly being updated and equipped to accurately gauge and

forecast mortality rates. At present, the majority of actuarial research in mortality

modeling involves factor-based approaches which operate at a global scale, placing

little attention on the determinants and interpretable risk factors of mortality, specif

ically from a spatial perspective. With an abundance of research being performed

in the field of spatial statistics and greater accessibility to localized mortality data,

there is a clear opportunity to extend the existing body of mortality literature to

wards the spatial domain. It is the objective of this dissertation to introduce these

new statistical approaches to equip the field of actuarial science to include geographic

space into the mortality modeling context.

First, this dissertation evaluates the underlying spatial patterns of mortality across

the United States, and introduces a spatial filtering methodology to generate latent

spatial patterns which capture the essence of these mortality rates in space. Second,

local modeling techniques are illustrated, and a multiscale geographically weighted

regression (MGWR) model is generated to describe the variation of mortality rates

across space in an interpretable manner which allows for the investigation of the

presence of spatial variability in the determinants of mortality. Third, techniques for

updating traditional mortality models are introduced, culminating in the development

of a model which addresses the relationship between space, economic growth, and

mortality. It is through these applications that this dissertation demonstrates the

utility in updating actuarial mortality models from a spatial perspective.
ContributorsCupido, Kyran (Author) / Jevtic, Petar (Thesis advisor) / Fotheringham, A. Stewart (Committee member) / Lanchier, Nicolas (Committee member) / Páez, Antonio (Committee member) / Reiser, Mark R. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2020