This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

158850-Thumbnail Image.png
Description
Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were

Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were proposed to overcome the challenges in practice. There are three major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage workflow to predict the spatial abundance of reef fish species in the Gulf of Mexico. There were two challenges, zero-inflated data and out of sample prediction. The methods and models in the workflow could effectively handle the zero-inflated sampling data without strong assumptions. Three strategies were proposed to solve the out of sample prediction problem. The results and discussions showed that the nonlinear prediction had the advantages of high accuracy, low bias and well-performed in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for analyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear mixed model that captured the linear and stationary effects. In the second stage, a generalized additive model was used to explain the nonlinear and nonstationary effects. The results illustrated that the two-stage model had good interpretability in understanding the effect of covariates, meanwhile, it kept high prediction accuracy which is competitive to the popular machine learning models, like, random forest, xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive regression tree), was proposed in the third part. Combining advantages in both BART and Gaussian process, the model could capture the nonlinear effects of both observed and latent covariates. To develop the model, first, the traditional BART was generalized to accommodate correlated errors. Then, the failure of likelihood based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed. Based on the idea of analysis of variation, back comparing and tuning range, were proposed to tackle this failure. Finally, effectiveness of the new model was examined by experiments on both simulation and real data.
ContributorsLu, Xuetao (Author) / McCulloch, Robert (Thesis advisor) / Hahn, Paul (Committee member) / Lan, Shiwei (Committee member) / Zhou, Shuang (Committee member) / Saul, Steven (Committee member) / Arizona State University (Publisher)
Created2020
190731-Thumbnail Image.png
Description
Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain

Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain Monte Carlo (MCMC) based Bayesian inference methods. Consequently, the first primary focus of this thesis is enhancing efficiency and scalability for UQ in inverse problems. On the other hand, the omnipresence of spatiotemporal data, particularly in areas like traffic analysis, underscores the need for effectively addressing inverse problems with spatiotemporal observations. Conventional solutions often overlook spatial or temporal correlations, resulting in underutilization of spatiotemporal interactions for parameter learning. Appropriately modeling spatiotemporal observations in inverse problems thus forms another pivotal research avenue. In terms of UQ methodologies, the calibration-emulation-sampling (CES) scheme has emerged as effective for large-dimensional problems. I introduce a novel CES approach by employing deep neural network (DNN) models during the emulation and sampling phase. This approach not only enhances computational efficiency but also diminishes sensitivity to training set variations. The newly devised “Dimension- Reduced Emulative Autoencoder Monte Carlo (DREAM)” algorithm scales Bayesian UQ up to thousands of dimensions in physics-constrained inverse problems. The algorithm’s effectiveness is exemplified through elliptic and advection-diffusion inverse problems. In the realm of spatiotemporal modeling, I propose to use Spatiotemporal Gaussian processes (STGP) in likelihood modeling and Spatiotemporal Besov processes (STBP) in prior modeling separately. These approaches highlight the efficacy of incorporat- ing spatial and temporal information for enhanced parameter estimation and UQ. Additionally, the superiority of STGP is demonstrated compared to static and time- averaged methods in time-dependent advection-diffusion partial differential equation (PDE) and three chaotic ordinary differential equations (ODE). Expanding upon Besov Process (BP), a method known for sparsity-promotion and edge-preservation, STBP is introduced to capture spatial data features and model temporal correlations by replacing the random coefficients in the series expansion with stochastic time functions following Q-exponential process(Q-EP). This advantage is showcased in dynamic computerized tomography (CT) reconstructions through comparison with classic STGP and a time-uncorrelated approach.
ContributorsLi, Shuyi (Author) / Lan, Shiwei (Thesis advisor) / Hahn, Paul (Committee member) / McCulloch, Robert (Committee member) / Dan, Cheng (Committee member) / Lopes, Hedibert (Committee member) / Arizona State University (Publisher)
Created2023