This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 212
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151967-Thumbnail Image.png
Description
A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of

A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of fluvial terraces in the region. Strath terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding pediments that occur on the margins of constraining mountainous drainage boundaries (Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading follows (Chapter 3), where pediments regrade to strath floodplains. This linkage between pediments and their distal straths is termed the pediment-strath relationship. Stability of the base level of the major drainage leads to lateral migration and straths are carved at the expense of bounding pediments through an erosional asymmetry facilitated by differential rock decay between the channel bank and bed. Fill terraces occur within the Salt River drainage basin as a result of the integration processes that connect formerly endorheic basins (Chapter 4). The topographic, spatial, and sedimentologic relationship of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the lower terraces in this basin. The high Stewart Mountain fill terrace records the initial integration of this river. The strath terraces inset below the Stewart Mountain terrace are a result of the pediment-strath relationship. These case studies also reveal that the under-addressed drainage processes of piracy and overflow have significant impacts in the evolution of drainages the lead to both strath and fill terrace formation in this region.
ContributorsLarson, Phillip Herman (Author) / Dorn, Ron I (Thesis advisor) / Schmeeckle, Mark (Thesis advisor) / Douglass, John (Committee member) / Cerveny, Randy (Committee member) / Arizona State University (Publisher)
Created2013
151326-Thumbnail Image.png
Description
The signing of the No Child Left Behind Act in 2001 created a need for Title 1 principals to conceptualize and operationalize parent engagement. This study examines how three urban principals in Arizona implemented the mandates of the Act as it pertains to parent involvement. The purpose of this qualitative

The signing of the No Child Left Behind Act in 2001 created a need for Title 1 principals to conceptualize and operationalize parent engagement. This study examines how three urban principals in Arizona implemented the mandates of the Act as it pertains to parent involvement. The purpose of this qualitative case study is to examine how principals operationalize and conceptualize parent involvement as they navigate barriers and laws particular to the state of Arizona. This study sought to understand issues surrounding parent involvement in Title 1 schools in Arizona. The beliefs and interview dialogue of the principals as it pertains to parent engagement provided an understanding of how urban principals in Arizona implement the aspects of No Child Left Behind Act that deal with parent involvement. The research study concluded that parents have community cultural wealth that contributes to the success of the students of engaged parents and that cultural responsive leadership assists principals with engaging parents in their schools. The research concludes that a gap exists between how parents and principals perceive and construct parent engagement versus what is prescribed in No Child Left Behind Act.
ContributorsConley, Loraine (Author) / Brayboy, Bryan (Thesis advisor) / Mccarty, Teresa (Committee member) / Scott, Kimberly (Committee member) / Arizona State University (Publisher)
Created2012
151328-Thumbnail Image.png
Description
Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing

Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing vent density to similar provinces such as the Snake River Plains of Idaho and Syria Planum and determining absolute age relationships among the volcanic features. Crater size-frequency distribution model ages of 120 Ma to 2.4 Ga indicate the province has been active for over half of the planet's history. During that time, age decreases from southwest to northeast, a trend that parallels the dominant orientation of faulting in the region, providing further evidence that volcanic activity in the region is tectonically controlled (or the tectonics is magmatically controlled). Morphological variation with age hints at an evolving magma source (increasing viscosity) or changing eruption conditions (decreasing eruption rate or eruption through thicker lithosphere).
ContributorsManfredi, Leon (Author) / Clarke, Amanda B (Thesis advisor) / Williams, David A. (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2012
151350-Thumbnail Image.png
Description
The purpose of the research study was to explore the perceptions of Navajo mothers and Navajo fathers in the development and childrearing practices of their children and to what extent each parent was involved in their children by gender and age. The objective of the interviews was to capture the

The purpose of the research study was to explore the perceptions of Navajo mothers and Navajo fathers in the development and childrearing practices of their children and to what extent each parent was involved in their children by gender and age. The objective of the interviews was to capture the perceptions of each parent as to child development and childrearing practices as well as the beliefs that they have on parental involvement. In the current study, the interviews provided information regarding attitudes and perceptions of parental involvement from the Navajo mothers and the Navajo fathers who participated in the study. By using probing questions, deeper insights into the understanding and perceptions of parental involvement were obtained.
ContributorsTsosie, Berdina (Author) / Appleton, Nicholas A (Thesis advisor) / Spencer, Dee A (Committee member) / Duplissis, Mark (Committee member) / Arizona State University (Publisher)
Created2012
151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
ContributorsSpivak-Birndorf, Lev (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Timmes, Francis (Committee member) / Williams, Lynda (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2012
151614-Thumbnail Image.png
Description
As a result of the district program evaluation, a follow up on teacher perceptions of an online collaboration versus face to face collaboration approach was deemed necessary. The interviews were conducted with eight teachers from a suburban southwest K-8 public school district. After all teachers had participated in a 10

As a result of the district program evaluation, a follow up on teacher perceptions of an online collaboration versus face to face collaboration approach was deemed necessary. The interviews were conducted with eight teachers from a suburban southwest K-8 public school district. After all teachers had participated in a 10 week program evaluation comparing online team teacher collaboration with face-to-face team teacher collaboration, the interview process began. One teacher from each grade level team was randomly selected to participate in the interview process. Analysis of the interview responses was inconclusive. Findings were confounded by the apparent lack of understanding of major concepts of Professional Learning Communities on the part of the participants. Assumptions about participant knowledge must be tested prior to investigations of the influence of either face to face or online format as delivery modes.
ContributorsTucker, Pamela K (Author) / McCoy, Kathleen (Thesis advisor) / Gehrke, Rebecca (Committee member) / Ham, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
151413-Thumbnail Image.png
Descriptionno
ContributorsTrujillo, Gabriel (Author) / Powers, Jeanne (Thesis advisor) / Fischman, Gustavo E. (Committee member) / Baracy, John (Committee member) / Arizona State University (Publisher)
Created2012
152269-Thumbnail Image.png
Description
Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between

Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar.
ContributorsDiMaggio, Erin Nicole (Author) / Arrowsmith, J Ramon (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun M (Committee member) / Clarke, Amanda B (Committee member) / Reed, Kaye E (Committee member) / Arizona State University (Publisher)
Created2013