This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171453-Thumbnail Image.png
Description
CO2 capture from ambient air (often referred to as direct air capture or DAC) is one of the Carbon Dioxide Removal methodologies that may limit Global Warming. High energy demand and high cost are currently serious barriers for large-scale DAC deployments. Moisture-controlled CO2 sorption is a novel technology for DAC,

CO2 capture from ambient air (often referred to as direct air capture or DAC) is one of the Carbon Dioxide Removal methodologies that may limit Global Warming. High energy demand and high cost are currently serious barriers for large-scale DAC deployments. Moisture-controlled CO2 sorption is a novel technology for DAC, where CO2 sorption cycles are driven solely by changes in surrounding humidity. In contrast to traditional temperature-swing adsorption cycles, water is a cheaper source of exergy than high-grade heat or electricity and moisture-controlled CO2 sorption may reduce the cost of DAC. However, analytic models that describe this sorption system have not been well established, especially in a quantitative manner. In this dissertation the author first establishes both static and kinetic models analytically with bottom-up approaches from the governing equations. These models are of scientific interest and also of industrial importance. They were validated by literature data and custom experiments. In a second part of the dissertation, the author explores the application of moisture-controlled materials in the form of membranes that actively pump CO2 against a concentration gradient. These explorations are guided by the quantitative models developed in the first part of the dissertation. In CO2 separation technologies relying on actively pumping membranes, a moisture-controlled CO2 sorbent is used as either a gas-gas membrane contactor or a gas-liquid membrane contactor. The author experimentally and theoretically determined that a specific commercial anion exchange membrane that was considered a plausible candidate does not satisfy the requirements for such an active membrane as a consequence of its slow kinetics of carbon transport. Requirements for materials to serve as active membranes have been clarified, which is of great interest for industrial application and will provide a starting point for future material design and development.
ContributorsKaneko, Yuta (Author) / Lackner, Klaus S (Thesis advisor) / Green, Matthew D (Thesis advisor) / Dirks, Gary W (Committee member) / Wade, Jennifer L (Committee member) / Freeman, Benny D (Committee member) / Arizona State University (Publisher)
Created2022
190764-Thumbnail Image.png
Description
Global emissions of carbon dioxide are reaching new heights every year since the Industrial Revolution. A major contributor to this is fossil fuel consumption. The consumption trend has indicated all this. It has also strengthened the argument for the need to cut down emissions and sweep out historical emissions through

Global emissions of carbon dioxide are reaching new heights every year since the Industrial Revolution. A major contributor to this is fossil fuel consumption. The consumption trend has indicated all this. It has also strengthened the argument for the need to cut down emissions and sweep out historical emissions through the implementation of Carbon Capture, Utilization, and Storage (CCUS) and Carbon Dioxide Removal (CDR) technologies respectively. This is required to control global warming. Direct Air Capture (DAC) is one of the CDR technologies. Extensive research and projections have suggested that DAC has tremendous potential to achieve global climate change mitigation goals. The feasibility of DAC is proven but work is required to bridge gaps in DAC research to make it affordable and scalable. Process modelling is an approach used to address these concerns. Current DAC research in system design and modelling is discrete and existing models have limited use cases. This work is focused on the development of a generalized process mass transfer model for the capture stage of solid sorbent DAC contactors. It provides flexibility for defining contactor geometry, selection of ambient conditions, and versatility to plug different sorbents in it for CO2 capture. The modelling procedure is explained, and a robustness check is performed to ensure model integrity. The results of the robustness check and sensitivity analysis are then explained. This research is part of a long-term effort to create a complete modelling package for the DAC community to boost research and development to large-scale deployments.
ContributorsPatel, Kshitij Mukeshbhai (Author) / Green, Matthew D (Thesis advisor) / Lackner, Klaus S (Committee member) / Cirucci, John (Committee member) / Arizona State University (Publisher)
Created2023
193592-Thumbnail Image.png
Description
This dissertation investigates the pressing issue of climate change, identifying carbon dioxide as its main driver and introduces Direct Air Capture (DAC) as a crucial technology for achieving significant reductions in net global emissions. Through an extensive review of existing literature on DAC, it examines various methods and materials developed

This dissertation investigates the pressing issue of climate change, identifying carbon dioxide as its main driver and introduces Direct Air Capture (DAC) as a crucial technology for achieving significant reductions in net global emissions. Through an extensive review of existing literature on DAC, it examines various methods and materials developed for this purpose, highlighting the ongoing efforts, advancements, and potential for real-world application. A novel sorbent, quaternary ammonium-functionalized poly(arylene ether sulfone) is explored for DAC via the moisture swing process. This sorbent exhibited the ability to capture and release atmospheric CO2 by a swing in moisture. Effects of form factors of powder, free standing dense membrane and thin film composite membrane were also evaluated for DAC. Furthermore, the dissertation explores modifications to poly(arylene ether sulfones) – polymers primarily used in desalination processes – to enhance water scarcity solutions by improving desalination membrane hydrophilicity and reducing fouling. This enhancement is achieved through the incorporation of zwitterionic groups into the polymer structure. Additionally, it investigates the synthesis of polysulfone polymers from lignin-derivable monomers, offering a greener alternative to traditional polysulfones used in desalination due to their environmental and health concerns. Polysulfones derivable from lignin exhibited comparable thermal properties and enhanced hydrophilicity compared to petroleum-derived polymers, showing considerable promise. Lastly, this dissertation investigates a potential hybrid system for desalination and direct ocean capture by integrating redox-active compounds into desalination membranes. This aims to achieve a pH swing that facilitates the formation of dissolved CO2.
ContributorsShokrollahzadeh Behbahani, Hoda (Author) / Green, Matthew D (Thesis advisor) / Lackner, Klaus S (Committee member) / Freeman, Benny D (Committee member) / Lind Thomas, MaryLaura (Committee member) / Moore, Gary F (Committee member) / Arizona State University (Publisher)
Created2024