This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156531-Thumbnail Image.png
Description
Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of

Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of sample preparation and detection by specialized equipment, limiting the feasibility of large-scale monitoring of NMs. A need exists to develop a rapid pre-screening technique to detect, within minutes, nanomaterials in complex matrices. The goal of this dissertation is to develop a tiered process to detect and characterize nanomaterials in consumer products and environmental samples. The approach is accomplished through a two tier rapid screening process to screen likely presence/absence of elements present in common nanomaterials at environmentally relevant concentrations followed by a more intensive three tier characterization process, if nanomaterials are likely to occur. The focus is on SiO2 and TiO2 nanomaterials with additional work performed on hydroxyapatite (Ca5(PO4)3(OH)). The five step tiered process is as follows: 1) screen for elements in the sample by laser induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF), 2) extract nanomaterials from the sample and screen for extracted elements by LIBS and XRF, 3) confirm presence and elemental composition of nanomaterials by transmission electron microscopy paired with energy dispersive X-ray spectroscopy, 4) quantify the elemental composition of the sample by inductively coupled plasma – mass spectrometry, and 5) identify mineral phase of crystalline material by X-ray diffraction. This dissertation found LIBS to be an accurate method to detect Si and Ti in food matrices (tier one approach) with strong agreement with the product label, detecting Si and Ti in 93% and 89% of the samples labeled as containing each material, respectively. In addition XRF identified Ti, Si, and Ca in 100% of food samples TEM-confirmed to contain Ti, Si, and Ca respectively. As a tier two approach, LIBS on the 0.2 micrometer filter identified nano silicon in 42% of samples confirmed by TEM to contain nano Si and 67% of TEM-confirmed samples to contain Ti. XRF identified Si, Ti, and Ca loaded on to a 0.1 µm filter and Ti in the surfactant rich phase of CPE of water and water with NOM.
ContributorsSchoepf, Jared (Author) / Westerhoff, Paul (Thesis advisor) / Dai, Lenore (Committee member) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2018
149672-Thumbnail Image.png
Description
The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions

The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions of dimethyl phosphite (DMHP), dimethyl methylphosphonate (DMMP), dimethyl ethylphosphonate (DMEP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP) with amorphous silica (a-silica), ã-alumina, and monoclinic zirconia (m-zirconia) for applications in air pollution control. Interactions of the selected OPs with a-silica were chosen as a baseline to determine the applicability of the computational predictions. Based on the a-silica results, computational methods were deemed valid for predicting the trends among materials with comparable interactions (e.g. -OH functionality of a-silica interacting with the phosphonyl O atoms of the OPs). Computational evaluations of the interactions with the OPs were extended to the oxide material, m-zirconia, and compared with the results for ã-alumina. It was hypothesized that m-zirconia had the potential to provide for the effective sorption of OPs in a manner superior to that of the a-silica and the ã-alumina surfaces due to the surface charges of the zirconium Lewis acid sites when coordinated in the oxidized form. Based on the computational study, the predicted heats of adsorption for the selected OPs onto m-zirconia were more favorable than those that were predicted for ã-alumina and a-silica. Experimental studies were carried out to confirm these computational results. M-zirconia nanoparticles were synthesized to determine if the materials could be utilized for the adsorption of the selected OPs. M-zirconia was shown to adsorb the OPs, and the heats of adsorption were stronger than those determined for commercial samples of a-silica. However, water interfered with the adsorption of the OPs onto m-zirconia, thus leading to heats of adsorption that were much weaker than those predicted computationally. Nevertheless, this work provides a first investigation of m-zirconia as a viable sorbent material for the ambient control of the selected gaseous OPs. Additionally, this work represents the first comparative study between computational predictions and experimental determination of thermodynamic properties for the interactions of the selected OPs and oxide surfaces.
ContributorsSiu, Eulalia Yuen-Yi (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica S (Committee member) / Hristovski, Kiril (Committee member) / Nielsen, David R (Committee member) / Pfeffer, Robert (Committee member) / Arizona State University (Publisher)
Created2011