This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151103-Thumbnail Image.png
Description
Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation

Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation broth with the relatively low product titer achieved. A lot of in situ product recovery techniques including liquid-liquid extraction, membrane extraction, pervaporation, gas stripping and adsorption have been developed and adsorption is shown to be the most promising one compared to other methods. Yet adsorption is not perfect due to defect in adsorbents and operation method used. So laurate adsorption using polymer resins was first investigated by doing adsorption isotherm, kinetic, breakthrough curve experiment and column adsorption of laurate from culture. The results indicate that polymer resins have good capacity for laurate with the highest capacity of 430 g/kg achieved by IRA-402 and can successfully recover laurate from culture without causing problem to Synechocystis sp.. Another research of this paper focused on a novel adsorbent: magnetic particles by doing adsorption equilibrium, kinetic and toxicity experiment. Preliminary results showed excellent performance on both adsorption capacity and kinetics. But further experiment revealed that magnetic particles were toxicity and inhibited growth of all kinds of cell tested severely, toxicity probably comes from Co (III) in magnetic particles. This problem might be solved by either using biocompatible coatings or immobilization of cells, which needs more investigation.
ContributorsWang, Yuchen (Author) / Nielsen, David Ross (Thesis advisor) / Andino, Jean (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2012
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023
171622-Thumbnail Image.png
Description
The objective of this research is to create a python program that can describe the adsorption breakthrough performance of direct air capture of CO2 by zeolite and other adsorbents. The purpose of creating this open-source code is because many commercial simulation software for adsorption process simulation can be extremely expensive

The objective of this research is to create a python program that can describe the adsorption breakthrough performance of direct air capture of CO2 by zeolite and other adsorbents. The purpose of creating this open-source code is because many commercial simulation software for adsorption process simulation can be extremely expensive and typically are yearly subscriptions which can be a costly expenditure for academic research labs and chemical engineers working on adsorption processes development and design. The simulation models are generated by solving the governing mass and energy transfer equations and validating the models with experimental data. The typical inputs for the adsorption process simulation include adsorption equilibrium of both CO2 and N2 on selected adsorbents, mass transfer coefficients information, adsorbent bed length and void fraction, and other physical and chemical properties of the adsorbent being tested. The outputs of the simulation package are the dimensionless CO2 concentration profile as a function of dimensionless time, which is usually used for evaluating the adsorbent performance for CO2 capture. The models created were compared to the commercial package gPROMs and they performed extremely well. The main variation between the models created and gPROMs was that the models tended to underpredict the breakpoint of experimental data and gPROMs tended to overpredict. This M.S. research is part of the major research efforts for developing an open-source adsorption process simulation package for carbon capture and conversion in Prof. Deng’s group at ASU. The ultimate goal of this research program is to reduce carbon emissions and develop a sustainable solution for a future carbon-free economy.
ContributorsBonelli, Xavier Berlage (Author) / Deng, Shuguang (Thesis advisor) / Andino, Jean (Committee member) / Seo, Don (Committee member) / Arizona State University (Publisher)
Created2022