This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156512-Thumbnail Image.png
Description
Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta

Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta amyloid proteins better, antibody fragments may be used to bind to these oligomers and potentially reduce the effects of Alzheimer’s disease.

This thesis focused on the expression and crystallization the fragment antigen binding antibody fragment A4. A fragment antigen binding fragment was chosen to be worked with as it is more stable than many other antibody fragments. A4 is important in Alzheimer’s disease as it is able to identify toxic beta amyloid.
ContributorsColasurd, Paige (Author) / Nannenga, Brent (Thesis advisor) / Mills, Jeremy (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2018
171722-Thumbnail Image.png
Description
Single and double deletion strains of Escherichia coli were grown in paired co-cultures with an intent to identify examples of metabolite exchange and cooperative interactions between strains. The essential genes pheA, argA, tyrA, and trpC, as well as the non- essential genes pykF, pykA, mdh, ppc, and nuoN were deleted

Single and double deletion strains of Escherichia coli were grown in paired co-cultures with an intent to identify examples of metabolite exchange and cooperative interactions between strains. The essential genes pheA, argA, tyrA, and trpC, as well as the non- essential genes pykF, pykA, mdh, ppc, and nuoN were deleted from Escherichia coli strains Bw25113 and ATCC 9637. Cultures were paired at three different initial ratios and grown at plate and flask scale. Optical density measurements were used to observe the performance of tested co-cultures, with changes in maximum optical density and growth rate used as indicators of interaction or lack thereof between tested pairs. Auxotrophic strains unable to produce essential amino acids were observed to grow in co-culture but not in monoculture, indicative of metabolite exchange facilitating growth. An increase in optical density for non-essential pairs when compared to the prototrophic parent and precursor monocultures was indicative of metabolite exchange. The initial frequency of paired mutants with non-essential deletions appeared to have an impact on growth performance, but whether this was indicative of any beneficial exchange was not able to be determined from data.
ContributorsFenner, Alexander James (Author) / Nielsen, David (Thesis advisor) / Wang, Xuan (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2022
157715-Thumbnail Image.png
Description
Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing

Aromatic compounds have traditionally been generated via petroleum feedstocks and have wide ranging applications in a variety of fields such as cosmetics, food, plastics, and pharmaceuticals. Substantial improvements have been made to sustainably produce many aromatic chemicals from renewable sources utilizing microbes as bio-factories. By assembling and optimizing native and non-native pathways to produce natural and non-natural bioproducts, the diversity of biochemical aromatics which can be produced is constantly being improved upon. One such compound, 2-Phenylethanol (2PE), is a key molecule used in the fragrance and food industries, as well as a potential biofuel. Here, a novel, non-natural pathway was engineered in Escherichia coli and subsequently evaluated. Following strain and bioprocess optimization, accumulation of inhibitory acetate byproduct was reduced and 2PE titers approached 2 g/L – a ~2-fold increase over previously implemented pathways in E. coli. Furthermore, a recently developed mechanism to

allow E. coli to consume xylose and glucose, two ubiquitous and industrially relevant microbial feedstocks, simultaneously was implemented and systematically evaluated for its effects on L-phenylalanine (Phe; a precursor to many microbially-derived aromatics such as 2PE) production. Ultimately, by incorporating this mutation into a Phe overproducing strain of E. coli, improvements in overall Phe titers, yields and sugar consumption in glucose-xylose mixed feeds could be obtained. While upstream efforts to improve precursor availability are necessary to ultimately reach economically-viable production, the effect of end-product toxicity on production metrics for many aromatics is severe. By utilizing a transcriptional profiling technique (i.e., RNA sequencing), key insights into the mechanisms behind styrene-induced toxicity in E. coli and the cellular response systems that are activated to maintain cell viability were obtained. By investigating variances in the transcriptional response between styrene-producing cells and cells where styrene was added exogenously, better understanding on how mechanisms such as the phage shock, heat-shock and membrane-altering responses react in different scenarios. Ultimately, these efforts to diversify the collection of microbially-produced aromatics, improve intracellular precursor pools and further the understanding of cellular response to toxic aromatic compounds, give insight into methods for improved future metabolic engineering endeavors.
ContributorsMachas, Michael (Author) / Nielsen, David R (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xuan (Committee member) / Nannenga, Brent (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2019