This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
152709-Thumbnail Image.png
Description
The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria.
ContributorsWang, Bo (Author) / Meldrum, Deirdre R (Thesis advisor) / Zhang, Weiwen (Committee member) / Sandrin, Todd R. (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2014
153161-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or slowed. An estimated 5.4 million Americans live with AD, and this number is expected to triple by year 2050 as the baby boomers age. The cost of care for AD in the US is about $200 billion each year. Unfortunately, in addition to the lack of an effective treatment or AD, there is also a lack of an effective diagnosis, particularly an early diagnosis which would enable treatment to begin before significant neuronal damage has occurred.

Increasing evidence implicates soluble oligomeric forms of beta-amyloid and tau in the onset and progression of AD. While many studies have focused on beta-amyloid, soluble oligomeric tau species may also play an important role in AD pathogenesis. Antibodies that selectively identify and target specific oligomeric tau variants would be valuable tools for both diagnostic and therapeutic applications and also to study the etiology of AD and other neurodegenerative diseases.

Recombinant human tau (rhTau) in monomeric, dimeric, trimeric and fibrillar forms were synthesized and purified to perform LDH assay on human neuroblastoma cells, so that trimeric but not monomeric or dimeric rhTau was identified as extracellularly neurotoxic to neuronal cells. A novel biopanning protocol was designed based on phage display technique and atomic force microscopy (AFM), and used to isolate single chain antibody variable domain fragments (scFvs) that selectively recognize the toxic tau oligomers. These scFvs selectively bind tau variants in brain tissue of human AD patients and AD-related tau transgenic rodent models and have potential value as early diagnostic biomarkers for AD and as potential therapeutics to selectively target toxic tau aggregates.
ContributorsTian, Huilai (Author) / Sierks, Michael R (Thesis advisor) / Dai, Lenore (Committee member) / Tillery, Stephen H (Committee member) / Nielsen, David R (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2014
151118-Thumbnail Image.png
Description
Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2)

Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO2 based photocatalysts to improve their activity. The interactions of CO2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO2 were studied using first-principle calculations on cluster systems. Charge and spin density analyses were implemented to determine if charge transfer to the CO2 molecule occurred and whether this charge transfer was comparable to that seen with the oxygen-deficient and unmodified anatase TiO2 (101) surfaces. Although the unmodified brookite (210) surface provided energetically similar CO2 interactions as compared to the unmodified anatase (101) surface, the unmodified brookite surface had negligible charge transfer to the CO2 molecule. This result suggests that unmodified brookite is not a suitable catalyst for the reduction of CO2. However, the results also suggest that modification of the brookite surface through the creation of oxygen vacancies may lead to enhancements in CO2 reduction. The computational results were supported with laboratory data for CO2 interaction with perfect brookite and oxygen-deficient brookite. The laboratory data, generated using diffuse reflectance Fourier transform infrared spectroscopy, confirms the presence of CO2- on only the oxygen-deficient brookite. Additional computational work was performed on I-doped anatase (101) and I-doped brookite (210) surface clusters. Adsorption energies and charge and spin density analyses were performed and the results compared. While charge and spin density analyses showed minute charge transfer to CO2, the calculated adsorption energies demonstrated an increased affinity for CO2adsorption onto the I-doped brookite surface. Gathering the results from all calculations, the computational work on oxygen-deficient, I-doped, and unmodified anatase and brookite surface structures suggest that brookite TiO2 is a potential photocatalysts for CO2 photoreduction.
ContributorsRodriguez, Monique M (Author) / Andino, Jean M (Thesis advisor) / Nielsen, David R (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2012
151071-Thumbnail Image.png
Description
ABSTRACT Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The polydimethylsiloxane (PDMS) is among the most interesting and promising membranes and has been extensively investigated. PDMS is an "organicelastomeric material, often referred to as "silicone rubber", exhibiting excellent film-forming ability, thermal

ABSTRACT Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The polydimethylsiloxane (PDMS) is among the most interesting and promising membranes and has been extensively investigated. PDMS is an "organicelastomeric material, often referred to as "silicone rubber", exhibiting excellent film-forming ability, thermal stability, chemical and physiological inertness. In this thesis incorporation of nanosilicalite-1 particles into a PDMS matrix and effect of particle loading and temperature variation on membrane performance was studied. A strong influence of zeolite was found on the pervaporation of alcohol/water mixtures using filled PDMS membranes. The mixed matrix membrane showed high separation factor at higher zeolite loading and high flux at higher temperature.
ContributorsYadav, Amit Binodkumar (Author) / Lind, Mary L (Thesis advisor) / Lin, Jerry Ys (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2012
151266-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during carbonization, resulting in an increase in the average pore size. In addition to the structural changes, the introduction of metal oxides into mesoporous carbon framework greatly enhances the electrochemical performance as a result of their pseudocapacitance. Also, after the addition of Co into the framework, the contraction of mesoporous powders decreased significantly and the capacitance increased prominently because of the solidification function of CoO nanoparticles. When carbon-cobalt composites are used as adsorbent, the adsorption capacity of dye pollutant in water is remarkably higher (90 mg/g) after adding Co than the mesoporous carbon powder (2 mg/g). Furthermore, the surface area and pore size of mesoporous composites can be greatly increased by addition of tetraethyl orthosilicate into the precursor with subsequent etching, which leads to a dramatic increase in the adsorption capacity from 90 mg/g up to 1151 mg/g. When used as electrode materials for amperometric biosensors, mesoporous carbons showed good sensitivity, selectivity and stability. And fluorine-free and low-cost poly (methacrylate)s have been developed as binders for screen printed biosensors. With using only 5wt% of poly (hydroxybutyl methacrylate), the glucose sensor maintained mechanical integrity and exhibited excellent sensitivity on detecting glucose level in whole rabbit blood. Furthermore, extremely high surface area mesoporous carbons have been synthesized by introducing inorganic Si precursor during self-assembly, which effectively determined norepinephrine at very low concentrations.
ContributorsDai, Mingzhi (Author) / Vogt, Bryan D (Thesis advisor) / La Belle, Jeffrey T (Committee member) / Dai, Lenore (Committee member) / Nielsen, David R (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
155661-Thumbnail Image.png
Description
The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 %

The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 % of the Kirchneriella cornutum into biocrude. Upon changing the reactor from a 100 ml to a 250 ml reactor, the yield in biocrude increased to 31.48 % for G. sulphuraria and dropped to 38.05 % for K. cornutum. Further, energy recoveries based on calorific values of HTL products were seen to drop by about 5 % of the 100 ml calculated values in the larger reactor.

Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost.

Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant.
ContributorsMathew, Melvin (Author) / Deng, Shuguang (Thesis advisor) / Lammers, Peter J. (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2017
149672-Thumbnail Image.png
Description
The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions

The release of organophosphorus compounds (OPs) and subsequent exposure to these compounds is of concern to humans and the environment. The goal of this work was to control the concentrations of gaseous OPs through interaction with sorbent oxides. Experimental and computational methods were employed to assess the interactions of dimethyl phosphite (DMHP), dimethyl methylphosphonate (DMMP), dimethyl ethylphosphonate (DMEP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP) with amorphous silica (a-silica), ã-alumina, and monoclinic zirconia (m-zirconia) for applications in air pollution control. Interactions of the selected OPs with a-silica were chosen as a baseline to determine the applicability of the computational predictions. Based on the a-silica results, computational methods were deemed valid for predicting the trends among materials with comparable interactions (e.g. -OH functionality of a-silica interacting with the phosphonyl O atoms of the OPs). Computational evaluations of the interactions with the OPs were extended to the oxide material, m-zirconia, and compared with the results for ã-alumina. It was hypothesized that m-zirconia had the potential to provide for the effective sorption of OPs in a manner superior to that of the a-silica and the ã-alumina surfaces due to the surface charges of the zirconium Lewis acid sites when coordinated in the oxidized form. Based on the computational study, the predicted heats of adsorption for the selected OPs onto m-zirconia were more favorable than those that were predicted for ã-alumina and a-silica. Experimental studies were carried out to confirm these computational results. M-zirconia nanoparticles were synthesized to determine if the materials could be utilized for the adsorption of the selected OPs. M-zirconia was shown to adsorb the OPs, and the heats of adsorption were stronger than those determined for commercial samples of a-silica. However, water interfered with the adsorption of the OPs onto m-zirconia, thus leading to heats of adsorption that were much weaker than those predicted computationally. Nevertheless, this work provides a first investigation of m-zirconia as a viable sorbent material for the ambient control of the selected gaseous OPs. Additionally, this work represents the first comparative study between computational predictions and experimental determination of thermodynamic properties for the interactions of the selected OPs and oxide surfaces.
ContributorsSiu, Eulalia Yuen-Yi (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica S (Committee member) / Hristovski, Kiril (Committee member) / Nielsen, David R (Committee member) / Pfeffer, Robert (Committee member) / Arizona State University (Publisher)
Created2011
161827-Thumbnail Image.png
Description
Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are active components of CCM, and the determination of their structures

Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are active components of CCM, and the determination of their structures is important to investigate the bicarbonate transport mechanisms. E. coli was selected as the expression host for these bicarbonate transporters, and optimization of expression and protein purification conditions was performed. Single particle electron cryomicroscopy (cryo-EM) or protein crystallography was carried out for each transporter. In this work, SbtA, BicA and SbtB, a regulator protein of SbtA, were heterologously expressed in E. coli and purified for structural studies. SbtB was highly expressed and two different crystal structures of SbtB were resolved at 2.01 Å and 1.8 Å, showing a trimer and dimer in the asymmetric unit, respectively. The yields of SbtA and BicA after purification reached 0.1 ± 0.04 and 6.5 ± 1.0 mg per liter culture, respectively. Single particle analysis showed a trimeric conformation of purified SbtA and promising interaction between SbtA and SbtB, where the bound SbtB was also possibly trimeric. For some crystallization experiments of these transporters, lipidic cubic phase (LCP) was used. In the case of LCP, often times the crystals grown are generally too tiny to withstand radiation damage from the X-ray beam during an X-ray diffraction experiment. As an alternative approach for this research, the microcrystal electron diffraction (MicroED) method was applied to the LCP-laden crystals because it is a powerful cryo-EM method for high-resolution structure determination from protein microcrystals. The new technique is termed as LCP-MicroED, however, prior to applying LCP-MicroED to the bicarbonate transporters, methods needed to be developed for LCP-MicroED. Therefore the model protein Proteinase K was used and its structure was determined to 2.0 Å by MicroED. Additionally, electron diffraction data from cholesterol and human A2A adenosine receptor crystals were collected at 1.0 Å and 4.5 Å using LCP-MicroED, respectively. Other applications of MicroED to different samples are also discussed.
ContributorsBu, Guanhong (Author) / Nannenga, Brent L (Thesis advisor) / Chiu, Po-Lin (Committee member) / Mills, Jeremy H (Committee member) / Nielsen, David R (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2021
193579-Thumbnail Image.png
Description
Metabolic engineering has emerged as a highly effective approach to optimizing industrial fermentation processes by introducing purposeful genetic alterations using recombinant DNA technology. Successful metabolic engineering begins with a careful investigation of cellular function, and based on the outcomes of this analysis, an improved strain is created and then constructed

Metabolic engineering has emerged as a highly effective approach to optimizing industrial fermentation processes by introducing purposeful genetic alterations using recombinant DNA technology. Successful metabolic engineering begins with a careful investigation of cellular function, and based on the outcomes of this analysis, an improved strain is created and then constructed using genetic engineering. By modifying the genetic makeup of cells, can increase the production of important chemicals, biofuels, medications, and agricultural products. The most often used genetic engineering tool is plasmid-based gene editing. In plasmid-based gene editing, the desired gene sequence is flanked by similar genome sequences, which encourages the foreign gene's integration into the genome. The main flaw of plasmid-based editing is the presence of selectable markers in the integrated DNA, which impacts cell stability as well as downstream applications that are critical to industries. Recently, with the growth of science, the new gene-editing technology CRISPR (clustered regularly interspaced short palindromic repeat) has revolutionized the field of gene editing. It has been used to incorporate the foreign genes into the genome of the microbial host without any mark and has more efficiency than the plasmid-based gene editing technique. CRISPR is utilized to achieve markerless integration of genes in genomes of microbes, which promotes cell stability and is also especially beneficial for applications in industries. In this experiment successfully integrated two genes into the genome of C.glutamicum employing markerless integration via homologous recombination, allowing cells to metabolize acetate into acetyl-CoA and improve the conversion of pyruvate into lactate. Further, this strain of C.glutamicum can be utilized as a platform for producing ethyl lactate, a green solvent using a microbial host
ContributorsBrahmankar, Sumant Milind (Author) / Varman, Arul M (Thesis advisor) / Nielsen, David R (Committee member) / Seto, Jong (Committee member) / Arizona State University (Publisher)
Created2024