This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157797-Thumbnail Image.png
Description
This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of

This work aims to characterize protein-nanoparticle interactions through the application of experimental techniques to aid in controlled nanoparticle production for various applications from manufacturing through medical to defense. It includes multiple steps to obtain purified and characterized protein and then the production of nanoparticles using the protein. This application of protein requires extremely pure homogenous solution of the protein that was achieved using numerous protein separation techniques which were experimented with. Crystallization conditions, protein separation methods and protein characterization methods were all investigated along with the protein-nanoparticle interaction studies. The main protein of study here is GroEL and the inorganic nanoparticle used is platinum. Some studies on MBP producing gold nanoparticles from an ionic gold precursor were also conducted to get a better perspective on nanoparticle formation. Protein purification methods, crystallization conditions, Car-9 tag testing and protein characterization methods were all investigated along with the focus of this work. It was concluded that more Car9 studies need to be carried out before being used as in the form of a loop in the protein. The nanoparticle experiments were successful and platinum nanoparticles were successfully synthesized using GroEL. The direction of further research in protein-nanoparticle studies are outlined towards the end of the thesis.
ContributorsSirajudeen, Luqmanal Hakim (Author) / Nannenga, Brent L. (Thesis advisor) / Acharya, Abhinav P (Committee member) / Mills, Jeremy H (Committee member) / Arizona State University (Publisher)
Created2019
161827-Thumbnail Image.png
Description
Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are active components of CCM, and the determination of their structures

Cyanobacteria contribute to more than a quarter of the primary carbon fixation worldwide. They have evolved a CO2 concentrating mechanism (CCM) to enhance photosynthesis because inorganic carbon species are limited in the aqueous environment. Bicarbonate transporters SbtA and BicA are active components of CCM, and the determination of their structures is important to investigate the bicarbonate transport mechanisms. E. coli was selected as the expression host for these bicarbonate transporters, and optimization of expression and protein purification conditions was performed. Single particle electron cryomicroscopy (cryo-EM) or protein crystallography was carried out for each transporter. In this work, SbtA, BicA and SbtB, a regulator protein of SbtA, were heterologously expressed in E. coli and purified for structural studies. SbtB was highly expressed and two different crystal structures of SbtB were resolved at 2.01 Å and 1.8 Å, showing a trimer and dimer in the asymmetric unit, respectively. The yields of SbtA and BicA after purification reached 0.1 ± 0.04 and 6.5 ± 1.0 mg per liter culture, respectively. Single particle analysis showed a trimeric conformation of purified SbtA and promising interaction between SbtA and SbtB, where the bound SbtB was also possibly trimeric. For some crystallization experiments of these transporters, lipidic cubic phase (LCP) was used. In the case of LCP, often times the crystals grown are generally too tiny to withstand radiation damage from the X-ray beam during an X-ray diffraction experiment. As an alternative approach for this research, the microcrystal electron diffraction (MicroED) method was applied to the LCP-laden crystals because it is a powerful cryo-EM method for high-resolution structure determination from protein microcrystals. The new technique is termed as LCP-MicroED, however, prior to applying LCP-MicroED to the bicarbonate transporters, methods needed to be developed for LCP-MicroED. Therefore the model protein Proteinase K was used and its structure was determined to 2.0 Å by MicroED. Additionally, electron diffraction data from cholesterol and human A2A adenosine receptor crystals were collected at 1.0 Å and 4.5 Å using LCP-MicroED, respectively. Other applications of MicroED to different samples are also discussed.
ContributorsBu, Guanhong (Author) / Nannenga, Brent L (Thesis advisor) / Chiu, Po-Lin (Committee member) / Mills, Jeremy H (Committee member) / Nielsen, David R (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2021