This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

158768-Thumbnail Image.png
Description
Constant false alarm rate is one of the essential algorithms in a RADAR detection system. It allows the RADAR system to dynamically set thresholds based on the data power level to distinguish targets with interfering noise and clutters.

To have a better acknowledgment of constant false alarm rate approaches performance, three

Constant false alarm rate is one of the essential algorithms in a RADAR detection system. It allows the RADAR system to dynamically set thresholds based on the data power level to distinguish targets with interfering noise and clutters.

To have a better acknowledgment of constant false alarm rate approaches performance, three clutter models, Gamma, Weibull, and Log-normal, have been introduced to evaluate the detection's capability of each constant false alarm rate algorithm.

The order statistical constant false alarm rate approach outperforms other conventional constant false alarm rate methods, especially in clutter evolved environments. However, this method requires high power consumption due to repeat sorting.
In the automotive RADAR system, the computational complexity of algorithms is essential because this system is in real-time. Therefore, the algorithms must be fast and efficient to ensure low power consumption and processing time.

The reduced computational complexity implementations of cell-averaging and order statistic constant false alarm rate were explored. Their big O and processing time has been reduced.
ContributorsChu, Huiwen (Author) / Bliss, Daniel W. (Thesis advisor) / Alkhateeb, Ahmed (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2020