This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023
157641-Thumbnail Image.png
Description
Human-agent teams (HATs) are expected to play a larger role in future command and control systems where resilience is critical for team effectiveness. The question of how HATs interact to be effective in both normal and unexpected situations is worthy of further examination. Exploratory behaviors are one that way adaptive

Human-agent teams (HATs) are expected to play a larger role in future command and control systems where resilience is critical for team effectiveness. The question of how HATs interact to be effective in both normal and unexpected situations is worthy of further examination. Exploratory behaviors are one that way adaptive systems discover opportunities to expand and refine their performance. In this study, team interaction exploration is examined in a HAT composed of a human navigator, human photographer, and a synthetic pilot while they perform a remotely-piloted aerial reconnaissance task. Failures in automation and the synthetic pilot’s autonomy were injected throughout ten missions as roadblocks. Teams were clustered by performance into high-, middle-, and low-performing groups. It was hypothesized that high-performing teams would exchange more text-messages containing unique content or sender-recipient combinations than middle- and low-performing teams, and that teams would exchange less unique messages over time. The results indicate that high-performing teams had more unique team interactions than middle-performing teams. Additionally, teams generally had more exploratory team interactions in the first session of missions than the second session. Implications and suggestions for future work are discussed.
ContributorsLematta, Glenn Joseph (Author) / Chiou, Erin K. (Thesis advisor) / Cooke, Nancy J. (Committee member) / Roscoe, Rod D. (Committee member) / Arizona State University (Publisher)
Created2019