This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

168485-Thumbnail Image.png
Description
In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs)

In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs) in surface waters and drinking water systems. This study focuses on the treatment of emerging chemical contaminants including nitrosodimethylamine (NDMA) and 1,4-dioxane. In addition, the inactivation of microbial contaminants of concern in water including E. coli, Legionella, Mycobacterium and fungal spores were studied using the same treatment technologies. The ECs chosen are not susceptible to conventional treatment process and there still remains a need for alternate processes for their removing/remediating to ensure safe drinking water. The treatment technologies utilized were Advanced Oxidation Processes (AOP) involving UV 220 /254 nm employing an excimer lamp and a low-pressure mercury lamp with ReFLeXTM technology and peracetic acid (PAA). The main objective of this study was to develop a new alternate technology for the enhanced remediation of chemical and microorganisms of concerns in water. The specific research objectives included: 1) To study the efficacy of the UV system to treat the selected contaminants. 2) To study the effect of PAA on the remediation of the contaminants. 3) To explore a new AOP technology under dynamic flow conditions with varying UV and PAA doses. 4) To determine optimized UV and PAA dosages to obtain enhanced remediation of the selected contaminant under dynamic flow conditions to better mimic the real-world applications.
ContributorsNatekar, Sunny Anand (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Diefenthal, George (Committee member) / Arizona State University (Publisher)
Created2021