This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

161275-Thumbnail Image.png
Description
The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading

The Internet-of-Things (IoT) boosts the vast amount of streaming data. However, even considering the growth of the cloud computing infrastructure, IoT devices will generate two orders of magnitude more than the capacity that centralized data center servers can process or store. This trend inevitability calls for the need for offloading IoT data processing to a decentralized edge computing infrastructure. On the other hand, deep-learning-based applications gain great progress by taking advantage of heavy centralized computing resources for training large models to fit increasingly complicated tasks. Even though large-scale deep learning models perform well in terms of accuracy, their high computational complexity makes it impossible to offload them onto edge devices for real-time inference and timely response. To enable timely IoT services on edge devices, this dissertation addresses the challenge from two perspectives. On the hardware side, a new field-programmable gate array (FPGA)-based framework for binary neural network and an application-specific integrated circuit (ASIC) accelerator for natural scene text interpretation are proposed, with the awareness of the computing resources and power constraint on edge. On the algorithm side, this work presents both the methodology of building more compact models and finding better computation-accuracy trade-off for existing models.
ContributorsLi, Yixing (Author) / Ren, Fengbo (Thesis advisor) / Vrudhula, Sarma (Committee member) / Seo, Jae-Sun (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2021