This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

157622-Thumbnail Image.png
Description
Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and

Admittance control with fixed damping has been a successful control strategy in previous human-robotic interaction research. This research implements a variable damping admittance controller in a 7-DOF robotic arm coupled with a human subject’s arm at the end effector to study the trade-off of agility and stability and aims to produce a control scheme which displays both fast rise time and stability. The variable damping controller uses a measure of intent of movement to vary damping to aid the user’s movement to a target. The range of damping values is bounded by incorporating knowledge of a human arm to ensure the stability of the coupled human-robot system. Human subjects completed experiments with fixed positive, fixed negative, and variable damping controllers to evaluate the variable damping controller’s ability to increase agility and stability. Comparisons of the two fixed damping controllers showed as fixed damping increased, the coupled human-robot system reacted with less overshoot at the expense of rise time, which is used as a measure of agility. The inverse was also true; as damping became increasingly negative, the overshoot and stability of the system was compromised, while the rise time became faster. Analysis of the variable damping controller demonstrated humans could extract the benefits of the variable damping controller in its ability to increase agility in comparison to a positive damping controller and increase stability in comparison to a negative damping controller.
ContributorsBitz, Tanner Jacob (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019