This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 191
Filtering by

Clear all filters

151879-Thumbnail Image.png
Description
This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers.

This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers. To move beyond traditional narratives of cultural collapse, I employ a Complex Adaptive Systems approach to this research, and combine agent-based computer simulations of Neolithic land-use with dynamic and spatially-explicit GIS-based environmental models to conduct experiments into long-term trajectories of different potential Neolithic socio-environmental systems. My analysis outlines how the Early Neolithic "collapse" was likely instigated by a non-linear sequence of events, and that it would have been impossible for Neolithic peoples to recognize the long-term outcome of their actions. The experiment-based simulation approach shows that, starting from the same initial conditions, complex combinations of feedback amplification, stochasticity, responses to internal and external stimuli, and the accumulation of incremental changes to the socio-natural landscape, can lead to widely divergent outcomes over time. Thus, rather than being an inevitable consequence of specific Neolithic land-use choices, the "catastrophic" transformation at the end of the Early Neolithic was an emergent property of the Early Neolithic socio-natural system itself, and thus likely not an easily predictable event. In this way, my work uses the technique of simulation modeling to connect CAS theory with the archaeological and geoarchaeological record to help better understand the causes and consequences of socio-ecological transformation at a regional scale. The research is broadly applicable to other archaeological cases of resilience and collapse, and is truly interdisciplinary in that it draws on fields such as geomorphology, computer science, and agronomy in addition to archaeology.
ContributorsUllah, Isaac (Author) / Barton, C. Michael (Thesis advisor) / Banning, Edward B. (Committee member) / Clark, Geoffrey (Committee member) / Arrowsmith, J. Ramon (Committee member) / Arizona State University (Publisher)
Created2013
151699-Thumbnail Image.png
Description
The causes and consequences of stylistic change have been a concern of archaeologists over the past several decades. The actual process of stylistic innovation, however, has received less attention. This project explores the relationship between the process of stylistic innovation on decorated pottery and the social context in which it

The causes and consequences of stylistic change have been a concern of archaeologists over the past several decades. The actual process of stylistic innovation, however, has received less attention. This project explores the relationship between the process of stylistic innovation on decorated pottery and the social context in which it occurred in the Hohokam area of south-central Arizona between A.D. 800 and 1300. This interval was punctuated by three episodes of reorganization, each of which was characterized to varying degrees by significant shifts in ideology, economics, and politics. Each reorganization episode was also accompanied by a rapid profusion of stylistic innovation on buff ware pottery. The goal of this study was to build a framework to understand the variation in the process of innovation as a response to different incentives and opportunities perceived in the changing social environment. By bringing stylistic analyses and provenance data together for the first time in Hohokam red-on-buff studies, I investigated how the process of innovation was variously influenced by social reorganizations at three different periods of time: the 9th, 11th, and 12th centuries A.D. Four variables were used to evaluate the process of innovation at each temporal period: 1) The origin of a stylistic invention, 2) the rate of its adoption, 3) the pattern of its adoption, and 4) the uniformity of its adoption among all buff ware potting communities. To accomplish the task, stylistic innovations and provenance were recorded on over 3,700 red-on-buff sherds were analyzed from 20 sites in the Phoenix Basin. The innovation process was found to vary with each reorganization episode, but often in different ways than expected. The results revealed the complexity and unpredictability of the process of stylistic innovation among the Hohokam. They also challenged some assumptions archaeologists have made regarding the scale and extent of the changes associated with some of the reorganization episodes. The variables utilized to measure the innovation process were found to be effective at providing a composite picture of that process, and thus warrant broader application to other archaeological contexts.
ContributorsLack, Andrew D (Author) / Abbott, David R. (Thesis advisor) / Hegmon, Michelle (Committee member) / Spielmann, Katherine A. (Committee member) / Nelson, Ben A. (Committee member) / Arizona State University (Publisher)
Created2013
152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
ContributorsSeyedmadani, Kimia (Author) / Pizziconi, Vincent (Thesis advisor) / Towe, Bruce (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
152093-Thumbnail Image.png
Description
Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of

Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of serious soil degradation, including salinization and waterlogging, which threaten the productivity of these fields and the world's food supply. Surprisingly, little ecological data on agricultural soils have been collected to understand and address these problems. How, then, can expanding and intensifying modern irrigation systems remain agriculturally productive for the long-term? Archaeological case studies can provide critical insight into how irrigated agricultural systems may be sustainable for hundreds, if not thousands, of years. Irrigation systems in Mesopotamia, for example, have been cited consistently as a cautionary tale of the relationship between mismanaged irrigation systems and the collapse of civilizations, but little data expressly link how and why irrigation failed in the past. This dissertation presents much needed ecological data from two different regions of the world - the Phoenix Basin in southern Arizona and the Pampa de Chaparrí on the north coast of Peru - to explore how agricultural soils were affected by long-term irrigation in a variety of social and economic contexts, including the longevity and intensification of irrigation agriculture. Data from soils in prehispanic and historic agricultural fields indicate that despite long-lived and intensive irrigation farming, farmers in both regions created strategies to sustain large populations with irrigation agriculture for hundreds of years. In the Phoenix Basin, Hohokam and O'odham farmers relied on sedimentation from irrigation water to add necessary fine sediments and nutrients to otherwise poor desert soils. Similarly, on the Pampa, farmers relied on sedimentation in localized contexts, but also constructed fields with ridges and furrows to draw detrimental salts away from planting surfaces in the furrows on onto the ridges. These case studies are then compared to failing modern and ancient irrigated systems across the world to understand how the centralization of management may affect the long-term sustainability of irrigation agriculture.
ContributorsStrawhacker, Colleen (Author) / Spielmann, Katherine A. (Thesis advisor) / Hall, Sharon J (Committee member) / Nelson, Margaret C. (Committee member) / Sandor, Jonathan A (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
151900-Thumbnail Image.png
Description
This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and

This dissertation research investigates both spatial and temporal aspects of Bronze Age land use and land cover in the Eastern Mediterranean using botanical macrofossils of charcoal and charred seeds as sources of proxy data. Comparisons through time and over space using seed and charcoal densities, seed to charcoal ratios, and seed and charcoal identifications provide a comprehensive view of island vs. mainland vegetative trajectories through the critical 1000 year time period from 2500 BC to 1500 BC of both climatic fluctuation and significant anthropogenic forces. This research focuses particularly on the Mediterranean island of Cyprus during this crucial interface of climatic and human impacts on the landscape. Macrobotanical data often are interpreted locally in reference to a specific site, whereas this research draws spatial comparisons between contemporaneous archaeological sites as well as temporal comparisons between non-contemporaneous sites. This larger perspective is particularly crucial on Cyprus, where field scientists commonly assume that botanical macrofossils are poorly preserved, thus unnecessarily limiting their use as an interpretive proxy. These data reveal very minor anthropogenic landscape changes on the island of Cyprus compared to those associated with contemporaneous mainland sites. These data also reveal that climatic forces influenced land use decisions on the mainland sites, and provides crucial evidence pertaining to the rise of early anthropogenic landscapes and urbanized civilization.
ContributorsKlinge, JoAnna M (Author) / Fall, Patricia L. (Thesis advisor) / Falconer, Steven E. (Committee member) / Brazel, Anthony J. (Committee member) / Pigg, Kathleen B (Committee member) / Arizona State University (Publisher)
Created2013
151863-Thumbnail Image.png
Description
This project examines the social and economic factors that contributed to the development of a specialist-based economy among the Phoenix Basin Hohokam. In the Hohokam case, widespread dependence on the products of a few concentrated pottery producers developed in the absence of political centralization or hierarchical social arrangements. The factors

This project examines the social and economic factors that contributed to the development of a specialist-based economy among the Phoenix Basin Hohokam. In the Hohokam case, widespread dependence on the products of a few concentrated pottery producers developed in the absence of political centralization or hierarchical social arrangements. The factors that promoted intensified pottery production, therefore, are the keys to addressing how economic systems can expand in small-scale and middle-range societies. This dissertation constructs a multi-factor model that explores changes to the organization of decorated pottery production during a substantial portion of the pre-Classic period (AD 700 - AD 1020). The analysis is designed to examine simultaneously several variables that may have encouraged demand for ceramic vessels made by specialists. This study evaluates the role of four factors in the development of supply and demand for specialist produced red-on-buff pottery in Hohokam settlements. The factors include 1) agricultural intensification in the form of irrigation agriculture, 2) increases in population density, 3) ritual or social obligations that require the production of particular craft items, and 4) reduced transport costs. Supply and demand for specialist-produced pottery is estimated through a sourcing analysis of non-local pottery at 13 Phoenix Basin settlements. Through a series of statistical analyses, the study measures changes in the influence of each factor on demand for specialist-produced pottery through four temporal phases of the Hohokam pre-Classic period. The analysis results indicate that specialized red-on-buff production was initially spurred by demand for light-colored, shiny, decorated pottery, but then by comparative advantages to specialized production in particular areas of the Phoenix Basin. Specialists concentrated on the Snaketown canal system were able to generate light-colored, mica-dense wares that Phoenix Basin consumers desired while lowering transport costs in the distribution of red-on-buff pottery. The circulation of decorated wares was accompanied by the production of plainware pottery in other areas of the Phoenix Basin. Economic growth in the region was based on complementary and coordinated economic activities between the Salt and the Gila River valleys.
ContributorsKelly, Sophia E (Author) / Abbott, David R. (Thesis advisor) / Darling, J. Andrew (Committee member) / Moore, Gordon (Committee member) / Spielmann, Katherine A. (Committee member) / Arizona State University (Publisher)
Created2013
Description
The Hohokam of central Arizona left behind evidence of a culture markedly different from and more complex than the small communities of O'odham farmers first encountered by Europeans in the sixteenth and seventeenth centuries A.D. Archaeologists have worked for well over a century to document Hohokam culture history, but much

The Hohokam of central Arizona left behind evidence of a culture markedly different from and more complex than the small communities of O'odham farmers first encountered by Europeans in the sixteenth and seventeenth centuries A.D. Archaeologists have worked for well over a century to document Hohokam culture history, but much about Pre-Columbian life in the Sonoran Desert remains poorly understood. In particular, the organization of the Hohokam economy in the Phoenix Basin has been an elusive and complicated subject, despite having been the focus of much previous research. This dissertation provides an assessment of several working hypotheses regarding the organization and evolution of the pottery distribution sector of the Hohokam economy. This was accomplished using an agent-based modeling methodology known as pattern-oriented modeling. The objective of the research was to first identify a variety of economic models that may explain patterns of artifact distribution in the archaeological record. Those models were abstract representations of the real-world system theoretically drawn from different sources, including microeconomics, mathematics (network/graph theory), and economic anthropology. Next, the effort was turned toward implementing those hypotheses as agent-based models, and finally assessing whether or not any of the models were consistent with Hohokam ceramic datasets. The project's pattern-oriented modeling methodology led to the discard of several hypotheses, narrowing the range of plausible models of the organization of the Hohokam economy. The results suggest that for much of the Hohokam sequence a market-based system, perhaps structured around workshop procurement and shopkeeper merchandise, provided the means of distributing pottery from specialist producers to widely distributed consumers. Perhaps unsurprisingly, the results of this project are broadly consistent with earlier researchers' interpretations that the structure of the Hohokam economy evolved through time, growing more complex throughout the Preclassic, and undergoing a major reorganization resulting in a less complicated system at the transition to the Classic Period.
ContributorsWatts, Joshua (Author) / Abbott, David R. (Thesis advisor) / Barton, C Michael (Committee member) / Van Der Leeuw, Sander (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
151753-Thumbnail Image.png
Description
Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their solution stability and conformational equilibrium have not been investigated in depth before. Presented here are the studies involving two sliding clamps: yeast PCNA and bacterial β clamp. These studies show that the β clamp has a very different solution stability than PCNA. These conclusions were reached through various different fluorescence-based experiments, including fluorescence correlation spectroscopy (FCS), Förster resonance energy transfer (FRET), single molecule fluorescence, and various time resolved fluorescence techniques. Interpretations of these, and all other, fluorescence-based experiments are often affected by the properties of the fluorophores employed. Often the fluorescence properties of these fluorophores are influenced by their microenvironments. Fluorophores are known to sometimes interact with biological molecules, and this can have pronounced effects on the rotational mobility and photophysical properties of the dye. Misunderstanding the effect of these photophysical and rotational properties can lead to a misinterpretation of the obtained data. In this thesis, photophysical behaviors of various organic dyes were studied in the presence of deoxymononucleotides to examine more closely how interactions between fluorophores and DNA bases can affect fluorescent properties. Furthermore, the properties of cyanine dyes when bound to DNA and the effect of restricted rotation on FRET are presented in this thesis. This thesis involves studying fluorophore photophysics in various microenvironments and then expanding into the solution stability and dynamics of the DNA sliding clamps.
ContributorsRanjit, Suman (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151925-Thumbnail Image.png
Description
This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in

This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in a series of widespread environmental transformations due to glacial-interglacial cycles, it is the only one for which we have a record of the response by modern humans. Mediterranean Spain lay outside the refugium areas of late Pleistocene Europe, in which advancing ice sheets limited the land available for subsistence and caused relative demographic packing of hunter-gatherers. Therefore, the archaeological records of Mediterranean Spain contain more generally applicable states of the Pleistocene-Holocene transition, making it a natural laboratory for research on human adaptation to an environmental transformation. Foragers in Mediterranean Spain appear to have primarily adapted to macroclimatic change by extending their social networks to access new subsistence resources and by changing the mix of traditional relationships. Comparing faunal records from two cave sites near the Mediterranean coast with Geographic Information System (GIS) reconstructions of the coastal littoral plain from the LGM to the Holocene indicates the loss of the large ungulate species (mainly Bos primigenius and Equus) at one site coincided with the associated littoral disappearing due to sea level rise in the late Upper Paleolithic. Farther north, where portions of the associated littoral remained due to a larger initial mass and a more favorable topography, the species represented in the faunal record were constant through time. Social boundary defense definitions of territory require arranging social relationships in order to access even this lightly populated new hunting area on the interior plain. That the values of the least-cost-paths fit the parameters of two models equating varying degrees of social alliance with direct travel distances also helps support the hypothesis that foragers in Mediterranean Spain adapted to the consequences of macroclimatic change by extending their social networks to gain access to new subsistence resources Keeping these relationships stable and reliable was a mitigating factor in the mobility patterns of foragers during this period from direct travel to more distant down-the-line exchange. Information about changing conditions and new circumstances flowed along these same networks of social relationships. The consequences of climate-induced environmental changes are already a concern in the world, and human decisions in regard to future conditions are built upon past precedents. As the response to environmental risk centers on increasing the resilience of vulnerable smallholders, archaeology has an opportunity to apply its long-term perspective in the search for answers
ContributorsSchmich, Steven A (Author) / Clark, Geoffrey A. (Thesis advisor) / Barton, Michael (Thesis advisor) / Bearat, Hamdallah (Committee member) / Jochim, Michael A. (Committee member) / Arizona State University (Publisher)
Created2013