This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

156602-Thumbnail Image.png
Description
The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called LPMLN.

This thesis presents the integration of RuDik which discovers logical rules over a given KG and LPMLN to do probabilistic inference to validate a fact. While automatically discovered rules over a KG are for human selection and revision, they can be turned into LPMLN programs with a minor modification. Leveraging the probabilistic inference in LPMLN, it is possible to (i) derive new information which is not explicitly stored in a KG with a probability associated with it, and (ii) provide supporting facts and rules for interpretable explanations for such decisions.

Also, this thesis presents experiments and results to show that this approach can label claims with high precision. The evaluation of the system also sheds light on the role played by the quality of the given rules and the quality of the KG.
ContributorsPradhan, Anish (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Papotti, Paolo (Committee member) / Arizona State University (Publisher)
Created2018