This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

156033-Thumbnail Image.png
Description
A modeling platform for predicting total ionizing dose (TID) and dose rate response of commercial commercial-off-the-shelf (COTS) linear bipolar circuits and technologies is introduced. Tasks associated with the modeling platform involve the development of model to predict the excess current response in a bipolar transistor given inputs of interface (NIT)

A modeling platform for predicting total ionizing dose (TID) and dose rate response of commercial commercial-off-the-shelf (COTS) linear bipolar circuits and technologies is introduced. Tasks associated with the modeling platform involve the development of model to predict the excess current response in a bipolar transistor given inputs of interface (NIT) and oxide defects (NOT) which are caused by ionizing radiation exposure. Existing models that attempt to predict this excess base current response are derived and discussed in detail. An improved model is proposed which modifies the existing model and incorporates the impact of charged interface trap defects on radiation-induced excess base current. The improved accuracy of the new model in predicting excess base current response in lateral PNP (LPNP) is then verified with Technology Computer Aided Design (TCAD) simulations. Finally, experimental data and compared with the improved and existing model calculations.
ContributorsTolleson, Blayne S. (Author) / Barnaby, Hugh J (Thesis advisor) / Gonzalez-Velo, Yago (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017