This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
155631-Thumbnail Image.png
Description
The information era has brought about many technological advancements in the past

few decades, and that has led to an exponential increase in the creation of digital images and

videos. Constantly, all digital images go through some image processing algorithm for

various reasons like compression, transmission, storage, etc. There is data loss during

The information era has brought about many technological advancements in the past

few decades, and that has led to an exponential increase in the creation of digital images and

videos. Constantly, all digital images go through some image processing algorithm for

various reasons like compression, transmission, storage, etc. There is data loss during this

process which leaves us with a degraded image. Hence, to ensure minimal degradation of

images, the requirement for quality assessment has become mandatory. Image Quality

Assessment (IQA) has been researched and developed over the last several decades to

predict the quality score in a manner that agrees with human judgments of quality. Modern

image quality assessment (IQA) algorithms are quite effective at prediction accuracy, and

their development has not focused on improving computational performance. The existing

serial implementation requires a relatively large run-time on the order of seconds for a single

frame. Hardware acceleration using Field programmable gate arrays (FPGAs) provides

reconfigurable computing fabric that can be tailored for a broad range of applications.

Usually, programming FPGAs has required expertise in hardware descriptive languages

(HDLs) or high-level synthesis (HLS) tool. OpenCL is an open standard for cross-platform,

parallel programming of heterogeneous systems along with Altera OpenCL SDK, enabling

developers to use FPGA's potential without extensive hardware knowledge. Hence, this

thesis focuses on accelerating the computationally intensive part of the most apparent

distortion (MAD) algorithm on FPGA using OpenCL. The results are compared with CPU

implementation to evaluate performance and efficiency gains.
ContributorsGunavelu Mohan, Aswin (Author) / Sohoni, Sohum (Thesis advisor) / Ren, Fengbo (Thesis advisor) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2017
157870-Thumbnail Image.png
Description
With the exponential growth in video content over the period of the last few years, analysis of videos is becoming more crucial for many applications such as self-driving cars, healthcare, and traffic management. Most of these video analysis application uses deep learning algorithms such as convolution neural networks (CNN) because

With the exponential growth in video content over the period of the last few years, analysis of videos is becoming more crucial for many applications such as self-driving cars, healthcare, and traffic management. Most of these video analysis application uses deep learning algorithms such as convolution neural networks (CNN) because of their high accuracy in object detection. Thus enhancing the performance of CNN models become crucial for video analysis. CNN models are computationally-expensive operations and often require high-end graphics processing units (GPUs) for acceleration. However, for real-time applications in an energy-thermal constrained environment such as traffic management, GPUs are less preferred because of their high power consumption, limited energy efficiency. They are challenging to fit in a small place.

To enable real-time video analytics in emerging large scale Internet of things (IoT) applications, the computation must happen at the network edge (near the cameras) in a distributed fashion. Thus, edge computing must be adopted. Recent studies have shown that field-programmable gate arrays (FPGAs) are highly suitable for edge computing due to their architecture adaptiveness, high computational throughput for streaming processing, and high energy efficiency.

This thesis presents a generic OpenCL-defined CNN accelerator architecture optimized for FPGA-based real-time video analytics on edge. The proposed CNN OpenCL kernel adopts a highly pipelined and parallelized 1-D systolic array architecture, which explores both spatial and temporal parallelism for energy efficiency CNN acceleration on FPGAs. The large fan-in and fan-out of computational units to the memory interface are identified as the limiting factor in existing designs that causes scalability issues, and solutions are proposed to resolve the issue with compiler automation. The proposed CNN kernel is highly scalable and parameterized by three architecture parameters, namely pe_num, reuse_fac, and vec_fac, which can be adapted to achieve 100% utilization of the coarse-grained computation resources (e.g., DSP blocks) for a given FPGA. The proposed CNN kernel is generic and can be used to accelerate a wide range of CNN models without recompiling the FPGA kernel hardware. The performance of Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet has been measured by the proposed CNN kernel on Intel Arria 10 GX1150 FPGA. The measurement result shows that the proposed CNN kernel, when mapped with 100% utilization of computation resources, can achieve a latency of 11ms, 84ms, 1614.9ms, and 990.34ms for Alexnet, Resnet-50, Retinanet, and Light-weight Retinanet respectively when the input feature maps and weights are represented using 32-bit floating-point data type.
ContributorsDua, Akshay (Author) / Ren, Fengbo (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2019
161913-Thumbnail Image.png
Description
Artificial intelligence is one of the leading technologies that mimics the problem solving and decision making capabilities of the human brain. Machine learning algorithms, especially deep learning algorithms, are leading the way in terms of performance and robustness. They are used for various purposes, mainly for computer vision, speech recognition,

Artificial intelligence is one of the leading technologies that mimics the problem solving and decision making capabilities of the human brain. Machine learning algorithms, especially deep learning algorithms, are leading the way in terms of performance and robustness. They are used for various purposes, mainly for computer vision, speech recognition, and object detection. The algorithms are usually tested inaccuracy, and they utilize full floating-point precision (32 bits). The hardware would require a high amount of power and area to accommodate many parameters with full precision. In this exploratory work, the convolution autoencoder is quantized for the working of an event base camera. The model is designed so that the autoencoder can work on-chip, which would sufficiently decrease the latency in processing. Different quantization methods are used to quantize and binarize the weights and activations of this neural network model to be portable and power efficient. The sparsity term is added to make the model as robust and energy-efficient as possible. The network model was able to recoup the lost accuracy due to binarizing the weights and activation's to quantize the layers of the encoder selectively. This method of recouping the accuracy gives enough flexibility to introduce the network on the chip to get real-time processing from systems like event-based cameras. Lately, computer vision, especially object detection have made strides in their object detection accuracy. The algorithms can sufficiently detect and predict the objects in real-time. However, end-to-end detection of the algorithm is challenging due to the large parameter need and processing requirements. A change in the Non Maximum Suppression algorithm in SSD(Single Shot Detector)-Mobilenet-V1 resulted in less computational complexity without change in the quality of output metric. The Mean Average Precision(mAP) calculated suggests that this method can be implemented in the post-processing of other networks.
ContributorsKuzhively, Ajay Balu (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Fan, Delian (Committee member) / Arizona State University (Publisher)
Created2021
161984-Thumbnail Image.png
Description
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as

The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as Central Processing Units (CPUs) and Graphical Processing Units (GPUs) , which are mainly designed for large, non-time-sensitive jobs in the cloud and do not match the needs of the edge workloads. Also, these systems are usually power hungry and are not suitable for resource-constrained edge deployments. Such application-hardware mismatch calls forth a new computing backbone to support the high-bandwidth, low-latency, and energy-efficient requirements. Also, the new system should be able to support a variety of edge applications with different characteristics. This thesis addresses the above challenges by studying the use of Field Programmable Gate Array (FPGA) -based computing systems for accelerating the edge workloads, from three critical angles. First, it investigates the feasibility of FPGAs for edge computing, in comparison to conventional CPUs and GPUs. Second, it studies the acceleration of common algorithmic characteristics, identified as loop patterns, using FPGAs, and develops a benchmark tool for analyzing the performance of these patterns on different accelerators. Third, it designs a new edge computing platform using multiple clustered FPGAs to provide high-bandwidth and low-latency acceleration of convolutional neural networks (CNNs) widely used in edge applications. Finally, it studies the acceleration of the emerging neural networks, randomly-wired neural networks, on the multi-FPGA platform. The experimental results from this work show that the new generation of workloads requires rethinking the current edge-computing architecture. First, through the acceleration of common loops, it demonstrates that FPGAs can outperform GPUs in specific loops types up to 14 times. Second, it shows the linear scalability of multi-FPGA platforms in accelerating neural networks. Third, it demonstrates the superiority of the new scheduler to optimally place randomly-wired neural networks on multi-FPGA platforms with 81.1 times better throughput than the available scheduling mechanisms.
ContributorsBiookaghazadeh, Saman (Author) / Zhao, Ming (Thesis advisor) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2021