This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

154798-Thumbnail Image.png
Description
Detecting cyber-attacks in cyber systems is essential for protecting cyber infrastructures from cyber-attacks. It is very difficult to detect cyber-attacks in cyber systems due to their high complexity. The accuracy of the attack detection in the cyber systems

Detecting cyber-attacks in cyber systems is essential for protecting cyber infrastructures from cyber-attacks. It is very difficult to detect cyber-attacks in cyber systems due to their high complexity. The accuracy of the attack detection in the cyber systems depends heavily on the completeness of the collected sensor information. In this thesis, two approaches are presented: one to detecting attacks in completely observable cyber systems, and the other to estimating types of states in partially observable cyber systems for attack detection in cyber systems. These two approaches are illustrated using three large data sets of network traffic because the packet-level information of the network traffic data provides details about the cyber systems.

The approach to attack detection in cyber systems is based on a multimodal artificial neural network (MANN) using the collected network traffic data from completely observable cyber systems for training and testing. Since the training of MANN is computationally intensive, to reduce the computational overhead, an efficient feature selection algorithm using the genetic algorithm is developed and incorporated in this approach.

In order to detect attacks in cyber systems in partially observable environments, an approach to estimating the types of states in partially observable cyber systems, which is the first phase of attack detection in cyber systems in partially observable environments, is presented. The types of states of such cyber systems are useful to detecting cyber-attacks in such cyber systems. This approach involves the use of a convolutional neural network (CNN), and unsupervised learning with elbow method and k-means clustering algorithm.
ContributorsGuha, Sayantan (Author) / Yau, Stephen S. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2016