This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 21 - 30 of 72
Filtering by

Clear all filters

153100-Thumbnail Image.png
Description
Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing

Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and topology design optimization of laminated composites is carried out. Sizing optimization, such as the layer thickness, topology optimization, such as the layer orientation and material and the number of layers present, and shape optimization of the overall composite part contribute to the design optimization process of laminates. An optimization host program written in C++ has been developed to implement the optimization methodology of both population based and numerical gradient based methods. The performance of the composite structural system is evaluated through explicit finite element analysis of shell elements carried out using LS-DYNA. Results from numerical examples demonstrate that optimization design processes can significantly improve composite part performance through implementation of optimum material layup and part shape.
ContributorsMika, Krista (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
153025-Thumbnail Image.png
Description
The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and

The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution

techniques. Spectroscopic techniques give valuable information at a molecular level but not all methods are economic and simple. To understand the mechanisms of alkali activated aluminosilicate materials, attenuated total reflectance (ATR) FTIR has been used where the effect of the parameters on the reaction products have been analyzed. To analyze complex systems like geopolymers using FTIR, deconvolution techniques help to obtain the properties of a particular peak attributed to a certain molecular vibration.

Time and temperature dependent analysis were done on slag pastes to understand the polymerization of reactive silica in the system with time and temperature variance. For time dependent analysis slag has been activated with sodium and potassium silicates using two different `n'values and three different silica modulus [Ms- (SiO2 /M2O)] values. The temperature dependent analysis was done by curing the samples at 60C and 80C. Similarly fly ash has been studied by activating with alkali hydroxides and alkali silicates. Under the same curing conditions the fly ash samples were evaluated to analyze the effects of added silicates for alkali activation.

The peak shifts in the FTIR explains the changes in the structural nature of the matrix and can be identified using the deconvolution technique. A strong correlation is found between the concentrations of silicate monomer in the activating position of the main Si-O-T (where T is Al/Si) stretching band in the FTIR spectrum, which

gives an indication of the relative changes in the Si/Al ratio. Also, the effect of the cation and silicate concentration in the activating solution has been discussed using the Fourier self deconvolution technique.
ContributorsMadavarapu, Sateesh Babu (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153182-Thumbnail Image.png
Description
Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O,

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
ContributorsBhatia, Mehul Anoopkumar (Author) / Solanki, Kiran N (Thesis advisor) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Neithalath, Narayanan (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014
150156-Thumbnail Image.png
Description
Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious

Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious microstructure. Therefore, these tests lack accurate measurement of the drying rate and data interpretation based on the principles of transport properties is limited. A vacuum-based test method capable of simulating early-age cracks in 2-D cement paste is developed which continuously monitors the weight loss and changes to the surface characteristics. 2-D crack evolution is documented using time-lapse photography. Effects of sample size, w/c ratio, initial curing and fiber content are studied. In the subsequent analysis, the cement paste phase is considered as a porous medium and moisture transport is described based on surface mass transfer and internal moisture transport characteristics. Results indicate that drying occurs in two stages: constant drying rate period (stage I), followed by a falling drying rate period (stage II). Vapor diffusion in stage I and unsaturated flow within porous medium in stage II determine the overall rate of evaporation. The mass loss results are analyzed using diffusion-based models. Results show that moisture diffusivity in stage I is higher than its value in stage II by more than one order of magnitude. The drying model is used in conjunction with a shrinkage model to predict the development of capillary pressures. Similar approach is implemented in drying restrained ring specimens to predict 1-D crack width development. An analytical approach relates diffusion, shrinkage, creep, tensile and fracture properties to interpret the experimental data. Evaporation potential is introduced based on the boundary layer concept, mass transfer, and a driving force consisting of the concentration gradient. Effect of wind velocity is reflected on Reynolds number which affects the boundary layer on sample surface. This parameter along with Schmidt and Sherwood numbers are used for prediction of mass transfer coefficient. Concentration gradient is shown to be a strong function of temperature and relative humidity and used to predict the evaporation potential. Results of modeling efforts are compared with a variety of test results reported in the literature. Diffusivity data and results of 1-D and 2-D image analyses indicate significant effects of fibers on controlling early-age cracks. Presented models are capable of predicting evaporation rates and moisture flow through hydrating cement-based materials during early-age drying and shrinkage conditions.
ContributorsBakhshi, Mehdi (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created2011
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150433-Thumbnail Image.png
Description

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials.

ContributorsMorris, Derek (Author) / Kaloush, Kamil (Thesis advisor) / Mobasher, Barzin (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2011
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
150550-Thumbnail Image.png
Description
Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design.
ContributorsVokshi, Erblina (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
153815-Thumbnail Image.png
Description
Increased priority on the minimization of environmental impacts of conventional construction materials in recent years has motivated increased use of waste materials or bi-products such as fly ash, blast furnace slag with a view to reduce or eliminate the manufacturing/consumption of ordinary portland cement (OPC) which accounts for approximately 5-7%

Increased priority on the minimization of environmental impacts of conventional construction materials in recent years has motivated increased use of waste materials or bi-products such as fly ash, blast furnace slag with a view to reduce or eliminate the manufacturing/consumption of ordinary portland cement (OPC) which accounts for approximately 5-7% of global carbon dioxide emission. The current study explores, for the first time, the possibility of carbonating waste metallic iron powder to develop carbon-negative sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems. The optimal mixture proportion and carbonation regime for this non-conventional sustainable binder is established based on the study of carbonation efficiency of a series of mixtures using thermogravimetric analysis. The pore- and micro-structural features of this novel binding material are also evaluated. The fracture response of this novel binder is evaluated using strain energy release rate and measurement of fracture process zone using digital image correlation (DIC). The iron-based binder system exhibits significantly higher strain energy release rates when compared to those of the OPC systems in both the unreinforced and glass fiber reinforced states. The iron-based binder also exhibits higher amount of area of fracture process zone due to its ability to undergo inelastic deformation facilitated by unreacted metallic iron particle inclusions in the microstructure that helps crack bridging /deflection. The intrinsic nano-mechanical properties of carbonate reaction product are explored using statistical nanoindentation technique coupled with a stochastic deconvolution algorithm. Effect of exposure to high temperature (up to 800°C) is also studied. Iron-based binder shows significantly higher residual flexural strength after exposure to high temperatures. Results of this comprehensive study establish the viability of this binder type for concrete as an environment-friendly and economical alternative to OPC.
ContributorsDas, Sumanta (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, S.D. (Committee member) / Mobasher, Barzin (Committee member) / Marzke, Robert (Committee member) / Chawla, Nikhilesh (Committee member) / Stone, David (Committee member) / Arizona State University (Publisher)
Created2015
156460-Thumbnail Image.png
Description
Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind.

Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind. In the case of polymeric fibers, due to hydrophobicity and lack of any chemical bond between the fiber and matrix, the weak interface zone limits the ability of the fibers to effectively carry the load that is on the matrix phase. Depending on the fiber’s surface asperity, shape, chemical nature, and mechanical bond characteristic of the load transfer between matrix and fiber can be altered so that the final composite can be improved. These modifications can be carried out by means of thermal treatment, mechanical surface modifications, or chemical changes The objective of this study is to measure and document the effect of gamma ray irradiation on the mechanical properties of macro polymeric fibers. The objective is to determine the mechanical properties of macro-synthetic fibers and develop guidelines for treatment and characterization that allow for potential positive changes due to exposure to irradiation. Fibers are exposed to various levels of ionizing radiation and the tensile, interface and performance in a mortar matrix are documented. Uniaxial tensile tests were performed on irradiated fibers to study fiber strength and failure pattern. SEM tests were carried out in order to study the surface characteristic and effect of different radiation dose on polymeric fiber. The interaction of the irradiated fiber with the cement composite was studied by a series of quasi-static pullout test for a specific embedded length. As a final task, flexural tests were carried out for different irradiated fibers to sum up the investigation. An average increase of 13% in the stiffness of the fiber was observed for 5 kGy of radiation. Flexural tests showed an average increase of 181% in the Req3 value and 102 % in the toughness of the sample was observed for 5 kGy of dose.
ContributorsTiwari, Sanchay Sushil (Author) / Mobasher, Barzin (Thesis advisor) / Neithalath, Narayanan (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2018