This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 21 - 30 of 127
Filtering by

Clear all filters

150506-Thumbnail Image.png
Description
The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system.

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.
ContributorsKonduri, Karthik Charan (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kuby, Michael (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
151072-Thumbnail Image.png
Description

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains at which a balance takes place between the fatigue damage during loading, and the healing during the rest periods between loading pulses. The viscoelastic continuum damage model was used to isolate time dependent damage and healing in hot mix asphalt from that due to fatigue. This study also included the development of a uniaxial fatigue test method and the associated data acquisition computer programs to conduct the test with and without rest period. Five factors that affect the fatigue and healing behavior of asphalt mixtures were evaluated: asphalt content, air voids, temperature, rest period and tensile strain. Based on the test results, two Pseudo Stiffness Ratio (PSR) regression models were developed. In the first model, the PSR was a function of the five factors and the number of loading cycles. In the second model, air voids, asphalt content, and temperature were replaced by the initial stiffness of the mix. In both models, the endurance limit was defined when PSR is equal to 1.0 (net damage is equal to zero). The results of the first model were compared to the results of a stiffness ratio model developed based on a parallel study using beam fatigue test (part of the same NCHRP 9-44A). The endurance limit values determined from uniaxial and beam fatigue tests showed very good correlation. A methodology was described on how to incorporate the second PSR model into fatigue analysis and damage using the DARWin-ME software. This would provide an effective and efficient methodology to design perpetual flexible pavements.

ContributorsZeiada, Waleed (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2012
150721-Thumbnail Image.png
Description

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms of life extension, relative benefit, and benefit-cost ratio. Optimal timing of pavement preservation means that the given maintenance treatment is applied so that it will extend the life of the roadway for the longest possible period with the minimum cost. This document examines the effectiveness of chip seal treatment in four climatic zones in the United States. The Long-Term Pavement Performance database was used to extract roughness and traffic data, as well as the maintenance and rehabilitation histories of treated and untreated sections. The sections were categorized into smooth, medium, and rough pavements, based upon initial condition as indicated by the International Roughness Index. Pavement performance of treated and untreated sections was collectively modeled using exponential regression analysis. Effectiveness was evaluated in terms of life extension, relative benefit, and benefit-cost ratio. The results of the study verified the assumption that treated sections performed better than untreated sections. The results also showed that the life extension, relative benefit, and benefit cost ratio are highest for sections whose initial condition is smooth at the time of chip seal treatment. These same measures of effectiveness are lowest for pavements whose condition is rough at the time of treatment. Chip seal treatment effectiveness showed no correlation to climatic conditions or to traffic levels.

ContributorsDosa, Matild (Author) / Mamlouk, Michael S. (Thesis advisor) / Kaloush, Kamil (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2012
150282-Thumbnail Image.png
Description
The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents

The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents a developed code produced from this research study called ZAPRAM, which is a mechanistically based pavement model based upon Limiting Strain Criteria in airfield HMA pavement design procedures. ZAPRAM is capable of pavement and airfield design analyses considering environmental effects. The program has been coded in Visual Basic and implemented in an event-driven, user-friendly educational computer program, which runs in Excel environment. Several studies were conducted in order to insure the validity of the analysis as well as the efficiency of the software. The first study yielded the minimum threshold number of computational points the user should use at a specific depth within the pavement system. The second study was completed to verify the correction factor for the Odemark's transformed thickness equation. Default correction factors were included in the code base on a large comparative study between Odemark's and MLET. A third study was conducted to provide a comparison of flexible airfield pavement design thicknesses derived from three widely accepted design procedures used in practice today: the Asphalt Institute, Shell Oil, and the revised Corps of Engineering rutting failure criteria to calculate the thickness requirements necessary for a range of design input variables. The results of the comparative study showed that there is a significant difference between the pavement thicknesses obtained from the three design procedures, with the greatest deviation found between the Shell Oil approach and the other two criteria. Finally, a comprehensive sensitivity study of environmental site factors and the groundwater table depth upon flexible airfield pavement design and performance was completed. The study used the newly revised USACE failure criteria for subgrade shear deformation. The methodology utilized the same analytical methodology to achieve real time environmental effects upon unbound layer modulus, as that used in the new AASHTO MEPDG. The results of this effort showed, for the first time, the quantitative impact of the significant effects of the climatic conditions at the design site, coupled with the importance of the depth of the groundwater table, on the predicted design thicknesses. Significant cost savings appear to be quite reasonable by utilizing principles of unsaturated soil mechanics into the new airfield pavement design procedure found in program ZAPRAM.
ContributorsSalim, Ramadan A (Author) / Zapata, Claudia (Thesis advisor) / Witczak, Matthew (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2011
149519-Thumbnail Image.png
Description
In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the

In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the development of highly disaggregate activity-based traffic models called microsimulations. These models predict the travel on a network at the level of the individual decision-maker, but do so with a large computational complexity and processing time requirement. The vast resources and steep learning curve required to integrate microsimulation models into the general transportation plan have deterred planning agencies from incorporating these tools. By researching the stochastic variability in the results of a microsimulation model with varying random number seeds, this paper evaluates the number of simulation trials necessary, and therefore the computational effort, for a planning agency to reach stable model outcomes. The microsimulation tool used to complete this research is the Transportation Analysis and Simulation System (TRANSIMS). The requirements for initiating a TRANSIMS simulation are described in the paper. Two analysis corridors are chosen in the Metropolitan Phoenix Area, and the roadway performance characteristics volume, vehicle-miles of travel, and vehicle-hours of travel are examined in each corridor under both congested and uncongested conditions. Both congested and uncongested simulations are completed in twenty trials, each with a unique random number seed. Performance measures are averaged for each trial, providing a distribution of average performance measures with which to test the stability of the system. The results of this research show that the variability in outcomes increases with increasing congestion. Although twenty trials are sufficient to achieve stable solutions for the uncongested state, convergence in the congested state is not achieved. These results indicate that a highly congested urban environment requires more than twenty simulation runs for each tested scenario before reaching a solution that can be assumed to be stable. The computational effort needed for this type of analysis is something that transportation planning agencies should take into consideration before beginning a traffic microsimulation program.
ContributorsZiems, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2010
154129-Thumbnail Image.png
Description
Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface

Pavement surface temperature is calculated using a fundamental energy balance model developed previously. It can be studied using a one-dimensional mathematical model. The input to the model is changed, to study the effect of different properties of pavement on its diurnal surface temperatures. It is observed that the pavement surface temperature has a microclimatic effect on the air temperature above it. A major increase in local air temperature is caused by heating of solid surfaces in that locality. A case study was done and correlations have been established to calculate the air temperature above a paved surface. Validation with in-situ pavement surface and air temperatures were made. Experimental measurement for the city of Phoenix shows the difference between the ambient air temperature of the city and the microclimatic air temperature above the pavement is approximately 10 degrees Fahrenheit. One mitigation strategy that has been explored is increasing the albedo of the paved surface. Although it will reduce the pavement surface temperature, leading to a reduction in air temperature close to the surface, the increased pavement albedo will also result in greater reflected solar radiation directed towards the building, thus increasing the building solar load. The first effect will imply a reduction in the building energy consumption, while the second effect will imply an increase in the building energy consumption. Simulation is done using the EnergyPlus tool, to find the microclimatic effect of pavement on the building energy performance. The results indicate the cooling energy savings of an office building for different types of pavements can be variable as much as 30%.
ContributorsSengupta, Shawli (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
154158-Thumbnail Image.png
Description

The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The objective of this research study was to develop a methodology

The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The objective of this research study was to develop a methodology for calculating a pavement condition index (PCI) based on historical distress data collected in the databases from Long-Term Pavement Performance (LTPP) program and Minnesota Road Research (Mn/ROAD) project. Excel™ templates were developed and successfully used to import distress data from both databases and directly calculate PCIs for test sections. Pavement performance master curve construction and verification based on the PCIs were also developed as part of this research effort. The analysis and results of LTPP data for several case studies indicated that the study approach is rational and yielded good to excellent statistical measures of accuracy.

It is believed that the InfoPaveTM LTPP and Mn/ROAD database can benefit from the PCI templates developed in this study, by making them available for users to compute PCIs for specific road sections of interest. In addition, the PCI-based performance model development can be also incorporated in future versions of InfoPaveTM. This study explored and analyzed asphalt pavement sections. However, the process can be also extended to Portland cement concrete test sections. State agencies are encouraged to implement similar analysis and modeling approach for their specific road distress data to validate the findings.

ContributorsWu, Gan (Author) / Kaloush, Kamil (Thesis advisor) / Zhou, Xuesong (Committee member) / Underwood, Benjamin Shane (Committee member) / Arizona State University (Publisher)
Created2015
156375-Thumbnail Image.png
Description

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although the national trends in Reclaimed Asphalt Pavements (RAP) usage are encouraging, the environmental conditions in Phoenix, Arizona are extreme and needs further consideration.

The objective of this research study was to evaluate the viability of using RAP in future pavement maintenance and rehabilitation projects for the City. Agencies in the State of Arizona have been slow adopting the use of RAP as a regular practice. While the potential benefits are great, there is some concern on the impact to long-term pavement performance.

RAP millings were sampled from the city’s stockpiles; processed RAP and virgin materials were provided by a local plant. Two asphalt binders were used: PG 70-10 and PG 64-16. RAP variability was evaluated by aggregate gradations; extracted and recovered binder was tested for properties and grading.

A mixture design procedure based on the City’s specifications was defined to establish trial blends. RAP incorporation was based on national and local practices. Four different RAP contents were studied 10%, 15%, 25%, and 25% content with a softer binder, in addition to a control mix (0% RAP).

Performance tests included: dynamic modulus to evaluate stiffness; Flow Number, to assess susceptibility for permanent deformation (rutting); and Tensile Strength Ratio as a measure of susceptibility to moisture damage.

Binder testing showed very stiff recovered asphalts and variable contents with a reasonable variability on aggregate gradations. Performance test results showed slightly higher modulus as RAP content increases, showing a slight improvement related to rutting as well. For moisture damage potential, all mixtures performed well showing improvement for RAP mixtures in most cases.

Statistical analysis showed that 0%, 10%, 15% and 25% with softer binder do not present significant statistical difference among mixtures, indicating that moderate RAP contents are feasible to use within the City paving operations and will not affect greatly nor negatively the pavement performance.

ContributorsARREDONDO, GONZALO ZELADA (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2018
156317-Thumbnail Image.png
Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently,

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

ContributorsBeGell, Dirk (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
157451-Thumbnail Image.png
Description
Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues

Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues is that distresses in asphalt pavement are dependent on climate, pavement structure, and traffic loads, in addition to factors such as properties of the asphalt mixture itself. Hence, to characterize the multiscale mechanics associated with binder to mixture behaviors, researchers characterized the fatigue and rutting resistance of asphalt binders and mixtures in the laboratory, and established specifications related to how asphalt mixtures would perform in the field.

This dissertation tackles the linkages across length scales with respect to rutting and cracking. Through the literature reviewed, studies regarding the linear and non-linear viscoelastic properties of asphalt mixture and the corresponding bitumen were identified. There was a wealth of data in this area. In addition, the relationship between the laboratory mixture short-term aging and the binder aging conditions were studied, characterized and analyzed.

The literature review showed that there exists a shortage of knowledge that directly examines the relationships between the binder nonlinear viscoelastic damage behaviors and mixture performance. Addressing this knowledge gap is the basic objective of this research. Specifically, the relationships between the non-recoverable creep compliance at 3.2 kPa (Jnr3.2) and the percent of elastic recovery (R3.2) from the multiple stress creep and recovery (MSCR) test and mixture rutting; and between mixture fatigue and binder linear amplitude sweep (LAS) were studied.

Finally, an aging study was performed to ensure that the binder tests properties reflect the condition of the binder during the mixture test when evaluating binder-to-mixture properties. The propensity to oxidize measured by calculating the aging ratio of various aged conditions (RTFO, PAV, and STOA) were gathered and analyzed.
ContributorsSalim, Ramadan A (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Mike (Committee member) / Arizona State University (Publisher)
Created2019