This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 121 - 123 of 123
Filtering by

Clear all filters

161962-Thumbnail Image.png
Description
Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing

Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing and a hydrophilic gel matrix for storage. The desorption process can be completed by elevating the temperature above the upper or lower critical solution temperature point to initiate the volume phase transition of either thermo-responsive or photothermal types. This thesis focuses on investigating the structural effect of hydrogels on moisture uptake. Firstly, the main matrix of gel desiccant, poly(N-isopropylacrylamide) hydrogel, was optimized via tuning synthesis temperature and initial monomer concentration. Secondly, a series of hydrogel-based desiccants consisting of a hygroscopic material, vinyl imidazole, and optimized poly(N-isopropylacrylamide) gel matrix were synthesized with different network structures. The moisture uptake result showed that the gel desiccant with an interpenetrating polymeric network (IPN) resulted in the best-performing moisture capturing. The gel desiccant with the best performance will be used as a primary structural unit to evaluate the feasibility of developing a light-responsive gel desiccant to materialize light-trigger moisture desorption for AWE technology in the future.
ContributorsZhao, Xingbang (Author) / Dai, Lenore (Thesis advisor) / Westerhoff, Paul (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
151406-Thumbnail Image.png
Description
Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product

Alkali-activated aluminosilicates, commonly known as "geopolymers", are being increasingly studied as a potential replacement for Portland cement. These binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a combination of both along with a silica-and-alumina rich material, such as fly ash or slag, to form a final product with properties comparable to or better than those of ordinary Portland cement. The kinetics of alkali activation is highly dependent on the chemical composition of the binder material and the activator concentration. The influence of binder composition (slag, fly ash or both), different levels of alkalinity, expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) activated fly ash-slag blended systems is discussed in this thesis. Optimal binder composition and the n values are selected based on the setting times. Higher activator alkalinity (n value) is required when the amount of slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is performed to evaluate the early age hydration process and to understand the reaction kinetics of the alkali activated systems. The differences in the calorimetric signatures between waterglass activated slag and fly ash-slag blends facilitate an understanding of the impact of the binder composition on the reaction rates. Kinetic modeling is used to quantify the differences in reaction kinetics using the Exponential as well as the Knudsen method. The influence of temperature on the reaction kinetics of activated slag and fly ash-slag blends based on the hydration parameters are discussed. Very high compressive strengths can be obtained both at early ages as well as later ages (more than 70 MPa) with waterglass activated slag mortars. Compressive strength decreases with the increase in the fly ash content. A qualitative evidence of leaching is presented through the electrical conductivity changes in the saturating solution. The impact of leaching and the strength loss is found to be generally higher for the mixtures made using a higher activator Ms and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) is used to obtain information about the reaction products.
ContributorsChithiraputhiran, Sundara Raman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniyam D (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
193692-Thumbnail Image.png
Description
In the age of 5th and upcoming 6th generation fighter aircraft one key proponent of these impressive machines is the inclusion of stealth. This inclusion is demonstrated by thoughtful design pertaining to the shape of the aircraft and rigorous material selection. Both criteria aim to minimize the radar cross section

In the age of 5th and upcoming 6th generation fighter aircraft one key proponent of these impressive machines is the inclusion of stealth. This inclusion is demonstrated by thoughtful design pertaining to the shape of the aircraft and rigorous material selection. Both criteria aim to minimize the radar cross section of these aircraft over a wide bandwidth of frequencies corresponding to an ever-evolving field of radar technology. Stealth is both an offensive and defensive capability meaning that service men and women depend on this feature to carry out their missions, and to return home safely. The goal of this paper is to introduce a novel method to designing disordered two-phase composites with desired electromagnetic properties. This task is accomplished by employing the spatial point correlation function, specifically at the two-point level. Effective at describing the dispersion of phases within a two-phase system, the two-point correlation function serves as a statistical function that becomes a realizable target for heterogeneous composites. Simulated annealing is exercised to reconstruct two-phase composite microstructures that initially do not match their target function, followed by two separate experiments aimed at studying the impact of the provided inputs on its outcome. Once conditions for reconstructing highly accurate microstructures are identified, modifications are made to the target function to extract and compare dielectric constants associated with each microstructure. Both the real and imaginary components, which respectively affect wave propagation and attenuation, of the dielectric constants are plotted to illustrate their behavior with increasing wavenumber. Conclusions suggest that favorable values of the complex dielectric constant can be reverse-engineered via careful consideration of the two-point correlation function. Subsequently, corresponding microstructures of the composite can be simulated and then produced through 3-D printing for testing and practical applications.
ContributorsPlantz, Alex Chadewick (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024