This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 163
Filtering by

Clear all filters

151950-Thumbnail Image.png
Description
Social media offers a powerful platform for the independent digital content producer community to develop, disperse, and maintain their brands. In terms of information systems research, the broad majority of the work has not examined hedonic consumption on Social Media Sites (SMS). The focus has mostly been on the organizational

Social media offers a powerful platform for the independent digital content producer community to develop, disperse, and maintain their brands. In terms of information systems research, the broad majority of the work has not examined hedonic consumption on Social Media Sites (SMS). The focus has mostly been on the organizational perspectives and utilitarian gains from these services. Unlike through traditional commerce channels, including e-commerce retailers, consumption enhancing hedonic utility is experienced differently in the context of a social media site; consequently, the dynamic of the decision-making process shifts when it is made in a social context. Previous research assumed a limited influence of a small, immediate group of peers. But the rules change when the network of peers expands exponentially. The assertion is that, while there are individual differences in the level of susceptibility to influence coming from others, these are not the most important pieces of the analysis--unlike research centered completely on influence. Rather, the context of the consumption can play an important role in the way social influence factors affect consumer behavior on Social Media Sites. Over the course of three studies, this dissertation will examine factors that influence consumer decision-making and the brand personalities created and interpreted in these SMS. Study one examines the role of different types of peer influence on consumer decision-making on Facebook. Study two observes the impact of different types of producer message posts with the different types of influence on decision-making on Twitter. Study three will conclude this work with an exploratory empirical investigation of actual twitter postings of a set of musicians. These studies contribute to the body of IS literature by evaluating the specific behavioral changes related to consumption in the context of digital social media: (a) the power of social influencers in contrast to personal preferences on SMS, (b) the effect on consumers of producer message types and content on SMS at both the profile level and the individual message level.
ContributorsSopha, Matthew (Author) / Santanam, Raghu T (Thesis advisor) / Goul, Kenneth M (Committee member) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2013
153540-Thumbnail Image.png
Description
In accordance with the Principal Agent Theory, Property Right Theory, Incentive Theory, and Human Capital Theory, firms face agency problems due to “separation of ownership and management”, which call for effective corporate governance. Ownership structure is a core element of the corporate governance. The differences in ownership structures thus may

In accordance with the Principal Agent Theory, Property Right Theory, Incentive Theory, and Human Capital Theory, firms face agency problems due to “separation of ownership and management”, which call for effective corporate governance. Ownership structure is a core element of the corporate governance. The differences in ownership structures thus may result in differential incentives in governance through the selection of senior management and in the design of senior management compensation system. This thesis investigates four firms with four different types of ownership structures: a public listed firm with the controlling interest by the state, a public listed firm with a non-state-owned controlling interest, a public listed firm a family-owned controlling interest, and a Sino-foreign joint venture firm. By using a case study approach, I focus on two dimensions of ownership structure characteristics – ownership diversification and differences in property rights so as to document whether there are systematic differences in governance participation and executive compensation design. Specifically, I focused on whether such differences are reflected in management selection (which is linked to adverse selection and moral hazard problems) and in compensation design (the choices of performance measurements, performance pay, and in stock option or restricted stock). The results are consistent with my expectation – the nature of ownership structure does affect senior management compensation design. Policy implications are discussed accordingly.
ContributorsGao, Shenghua (Author) / Pei, Ker-Wei (Thesis advisor) / Li, Feng (Committee member) / Shen, Wei (Committee member) / Arizona State University (Publisher)
Created2015
153547-Thumbnail Image.png
Description
Mobile applications (Apps) markets with App stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. Several distinctive features of mobile App store markets including – (a) highly heterogeneous consumer preferences and values, (b) high consumer cognitive burden

Mobile applications (Apps) markets with App stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. Several distinctive features of mobile App store markets including – (a) highly heterogeneous consumer preferences and values, (b) high consumer cognitive burden of searching a large selection of similar Apps, and (c) continuously updateable product features and price – present a unique opportunity for IS researchers to investigate theoretically motivated research questions in this area. The aim of this dissertation research is to investigate the key determinants of mobile Apps success in App store markets. The dissertation is organized into three distinct and related studies. First, using the key tenets of product portfolio management theory and theory of economies of scope, this study empirically investigates how sellers’ App portfolio strategies are associated with sales performance over time. Second, the sale performance impacts of App product cues, generated from App product descriptions and offered from market formats, are examined using the theories of market signaling and cue utilization. Third, the role of App updates in stimulating consumer demands in the presence of strong ranking effects is appraised. The findings of this dissertation work highlight the impacts of sellers’ App assortment, strategic product description formulation, and long-term App management with price/feature updates on success in App market. The dissertation studies make key contributions to the IS literature by highlighting three key managerially and theoretically important findings related to mobile Apps: (1) diversification across selling categories is a key driver of high survival probability in the top charts, (2) product cues strategically presented in the descriptions have complementary relationships with market cues in influencing App sales, and (3) continuous quality improvements have long-term effects on App success in the presence of strong ranking effects.
ContributorsLee, Gun Woong (Author) / Santanam, Raghu (Thesis advisor) / Gu, Bin (Committee member) / Park, Sungho (Committee member) / Arizona State University (Publisher)
Created2015
153411-Thumbnail Image.png
Description
Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces are described.
ContributorsLiu, Shanliangzi (Author) / Rykaczewski, Konrad (Thesis advisor) / Alford, Terry (Committee member) / Herrmann, Marcus (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2015
153244-Thumbnail Image.png
Description
Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover

Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover some of the wasted

heat. Thermal conductivity measurement systems are an important part of the char-

acterization processes of thermoelectric materials. These systems must possess the

capability of accurately measuring the thermal conductivity of both bulk and thin-lm

samples at dierent ambient temperatures.

This paper discusses the construction, validation, and improvement of a thermal

conductivity measurement platform based on the 3-Omega technique. Room temperature

measurements of thermal conductivity done on control samples with known properties

such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide

(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.

These quantities were all within 8% of literature values. In addition, the thermal

conductivity of bulk SiO2 was measured as a function of temperature in a Helium-

4 cryostat from 75K to 250K. The results showed good agreement with literature

values that all fell within the error range of each measurement. The uncertainty in

the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system

was used to measure the room temperature thermal conductivity of a nanocomposite

composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,

matrix as a function of the concentration of In2Se3. The observed trend was in

qualitative agreement with the expected behavior.

i
ContributorsJaber, Abbas (Author) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2014
149953-Thumbnail Image.png
Description
The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, the original problem can be approximated via the sum of a series of simple functions with closed form solutions. A preconditioner for solving the block Toeplitz with Toeplitz block (BTTB) linear system is proposed to accelerate the computation. An in-depth discussion on the rate of convergence and the optimal parameter selection criteria is given. Numerical experiments are used to test the performance and the robustness of the proposed algorithm to a wide range of parameter values. Applications of the algorithm in magnetic resonance (MR) imaging and a comparison with other existing methods are included. The second part of this work is the application of the TV-$\ell_1$ model in source localization using sensor arrays. The array output is reformulated into a sparse waveform via an over-complete basis and study the $\ell_p$-norm properties in detecting the sparsity. An algorithm is proposed for minimizing a non-convex problem. According to the results of numerical experiments, the proposed algorithm with the aid of the $\ell_p$-norm can resolve closely distributed sources with higher accuracy than other existing methods.
ContributorsShen, Wei (Author) / Mittlemann, Hans D (Thesis advisor) / Renaut, Rosemary A. (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Gelb, Anne (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2011
153954-Thumbnail Image.png
Description
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the

Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
ContributorsPendota, Premchand (Author) / Herrmann, Marcus (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
154184-Thumbnail Image.png
Description
The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each

The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport.

Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed.

In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts.
ContributorsLiu, Minglu (Author) / Wang, Robert Y (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Phelan, Patrick (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2015
155928-Thumbnail Image.png
Description
How to play the advantages of network loan platform to reduce the financing costs of net loan platform both in theory and practice has important significance. In this paper, we use the method of qualitative and quantitative combination. First of all, through the interview of the net loan platform practitioners,

How to play the advantages of network loan platform to reduce the financing costs of net loan platform both in theory and practice has important significance. In this paper, we use the method of qualitative and quantitative combination. First of all, through the interview of the net loan platform practitioners, the financing cost of the net loan platform comes from the internal and external parts. Part of the network loan platform should be righteous, but counterproductive human and material costs, credit costs, information efficiency, transaction costs and matching costs; part of the emerging industry as a challenge, compliance costs, technical costs and safety costs and other cost. And put forward the top design credit system, promote the credit system; build a unified development of regulatory policies to reduce compliance risks; increase investment in technology, share the improvement of technological progress bonuses. Through the establishment of the regression model, the paper analyzes the influence of various indexes of network loan platform on the cost of network reception. It is found that the background of net loan platform with shareholder and executive team as the proxy variable has significant influence on the cost of network loan platform. The effect is not significant. Risk control indicators on the net loan platform cost has a significant negative effect. The impact of operating capacity on the cost of net loan platform differentiation, the acquisition of the cost of positive relations, the other is negative relations. Policy compliance indicators of financial security on the net loan platform cost significantly, the other did not significantly affect the role of liquidity indicators of differentiation, the average borrowing period will significantly affect the net loan platform costs, liquidity is a negative impact. And finally put forward the policy and recommendations and research limitations and future direction.
ContributorsRen, Junxia (Author) / Gu, Bin (Thesis advisor) / Chang, Chun (Thesis advisor) / Qian, Jun (Committee member) / Arizona State University (Publisher)
Created2017
155990-Thumbnail Image.png
Description
This article can be divided into six parts.

The first chapter analyzes the background, theatrical and particle reasons of this research. The author argues that the management of law firm needs a set of good system. The first one is operating the law firm in scale, and the other on

This article can be divided into six parts.

The first chapter analyzes the background, theatrical and particle reasons of this research. The author argues that the management of law firm needs a set of good system. The first one is operating the law firm in scale, and the other on is corporate management model, which shall be constructed in detail in the paper and will be put into practice by the law firm in which the author is worked.

The second chapter will introduce modern management theory, combining the situation of management in our law firm to analyze, raising some reasonable suggestions and instructions to promote our law firm to achieve the corporate management.

In the third chapter, the first chapter, starting with the review of the development process of foreign and our law firms, listing the organizational forms and the characteristics of our law firm, analyzing the situation and the drawbacks of the law firm management.

The fourth and fifth chapter introduce he background, the connotation of the corporate management model, listing the development and successful experience of some typical cases in respect of corporate management.

In the last chapter, the construction of corporate management model will be introduced in terms of organization form, human resource management and informationizing development.

The corporate management model is not mature in china. Though it is not easy to reform the existing model, but it should be believed that the development benefiting the legal industry will be achieved.
ContributorsZhu, Ping (Author) / Gu, Bin (Thesis advisor) / Chang, Chun (Thesis advisor) / Zhu, Ning (Committee member) / Arizona State University (Publisher)
Created2017