This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 141 - 150 of 158
Filtering by

Clear all filters

161882-Thumbnail Image.png
Description
Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the current industry standard of 160 µm can reduce manufacturing cost,

Crystalline silicon covers more than 85% of the global photovoltaics industry and has sustained a nearly 30% year-over-year growth rate. Continued cost and capital expenditure (CAPEX) reductions are needed to sustain this growth. Using thin silicon wafers well below the current industry standard of 160 µm can reduce manufacturing cost, CAPEX, and levelized cost of electricity. Additionally, thinner wafers enable more flexible and lighter module designs, making them more compelling in market segments like building-integrated photovoltaics, portable power, aerospace, and automotive industries. Advanced architectures and superior surface passivation schemes are needed to enable the use of very thin silicon wafers. Silicon heterojunction (SHJ) and SHJ with interdigitated back contact solar cells have demonstrated open-circuit voltages surpassing 720 mV and the potential to surpass 25% conversion efficiency. These factors have led to an increasing interest in exploring SHJ solar cells on thin wafers. In this work, the passivation capability of the thin intrinsic hydrogenated amorphous silicon layer is improved by controlling the deposition temperature and the silane-to-hydrogen dilution ratio. An effective way to parametrize surface recombination is by using surface saturation current density and a very low surface saturation density is achieved on textured wafers for wafer thicknesses ranging between 40 and 180 µm which is an order of magnitude lesser compared to the prevalent industry standards. Implied open-circuit voltages over 760 mV were accomplished on SHJ structures deposited on n-type silicon wafers with thicknesses below 50 µm. An analytical model is also described for a better understanding of the variation of the recombination fractions for varying substrate thicknesses. The potential of using very thin wafers is also established by manufacturing SHJ solar cells, using industrially pertinent processing steps, on 40 µm thin standalone wafers while achieving maximum efficiency of 20.7%. It is also demonstrated that 40 µm thin SHJ solar cells can be manufactured using these processes on large areas. An analysis of the percentage contribution of current, voltage, and resistive losses are also characterized for the SHJ devices fabricated in this work for varying substrate thicknesses.
ContributorsBalaji, Pradeep (Author) / Bowden, Stuart (Thesis advisor) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Augusto, Andre (Committee member) / Arizona State University (Publisher)
Created2021
161729-Thumbnail Image.png
Description
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small

Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
ContributorsBiswas, Shilpita (Author) / Christen, Jennifer B (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021
161642-Thumbnail Image.png
Description
Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can benefit from having lower doped substrates, with undoped solar cells

Unlike conventional solar cells, modern high efficiency passivated contacts solar cells like silicon heterojunction (SHJ) cells have excellent surface passivation and use high bulk lifetime wafers which increase the operating injection level of these devices. These solar cell architectures can benefit from having lower doped substrates, with undoped solar cells becoming an attractive option. There has been very limited literature on high bulk resistivity substrates (>>10 Ωcm). This thesis work provides a comprehensive assessment of the potential of high resistivity/undoped substrates for high performance and more reliable silicon solar cells by demonstrating the results from modeling as well as characterization of SHJ solar cells fabricated with high resistivity/undoped substrates under real-world illumination and temperature conditions that the cells/modules experience in the field. In this work, the results from the analytical model demonstrated the effects of various defects, variation in doping and temperature on the performance of silicon solar cells. Experimentally, SHJ cells with bulk resistivities in the range of 1 Ωcm to >15k Ωcm were fabricated, and cell efficiencies over 20% were measured at standard testing conditions (STC) across the entire range of bulk resistivities. The illumination response (0.1-1 sun) and temperature coefficients (25-90 °C) were shown to be independent of the bulk resistivity. No light induced degradation was observed in the n-type SHJ cells of all resistivity ranges whereas high resistivity p-type SHJ cells showed less degradation compared to that of commercial resistivity range (<10 Ωcm). Very high reverse breakdown voltages (over 1 kV) were demonstrated for SHJ cells fabricated with high resistivity wafers. Using simulation, the importance of having cells in the modules with breakdown voltage higher than the series string voltage for safe and reliable operation of the photovoltaic (PV) system was highlighted. The ingot yield can be improved by moving towards high resistivity ranges to manufacture high efficiency reliable solar cells by utilizing the entire ingot and eliminating the need to adhere to narrow resistivity range. Thus, the novel findings from this work can have profound impact on ingot and module manufacturing resulting in significant cost savings as well as improvement in the system reliability.
ContributorsSrinivasa, Apoorva (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021
168529-Thumbnail Image.png
Description
To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently

To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently to integrate III-V with Si for multi-junction solar cell purposes. The focus of this paper is to explore GaP-based dilute nitrides as a possible top cell candidate for Si-based multi-junctions. The direct growth of dilute nitrides in a lattice-matched configuration epitaxially in literature is reviewed. The problems associated with such growths are outlined and pathways to mitigate these problems are presented. The need for a GaP buffer layer between the dilute nitride film and Si is established. Defects in GaP/Si system are explored in detail and a study on pit formation during such growth is performed. Effective suppression of pits in GaP surface grown on Si is achieved. Issues facing GaP-based dilute nitrides in terms of material properties are outlined. Review of these challenges is done and some possible future areas of interest to improve material quality are established. Finally, the growth process of dilute nitrides using Molecular Beam Epitaxy tool is explained. Results for GaNP grown on Si pre and post growth treatments are detailed.
ContributorsMurali, Srinath (Author) / Honsberg, Christiana (Thesis advisor) / Goodnick, Stephen (Committee member) / King, Richard (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2022
153600-Thumbnail Image.png
Description
In this study I investigate the organizational mechanisms (pathways) through which strategic investors can help a firm improve performance. Many commercial banks in China have recently invited foreign banks as strategic investors since China’s entry into the World Trade Organization (WTO), hoping to gain managerial and technological knowhow from the

In this study I investigate the organizational mechanisms (pathways) through which strategic investors can help a firm improve performance. Many commercial banks in China have recently invited foreign banks as strategic investors since China’s entry into the World Trade Organization (WTO), hoping to gain managerial and technological knowhow from the foreign banks. Using Shanghai Pudong Development Bank as a representative example, I conduct an in-depth qualitative analysis about how the joining of Citi Bank as a strategic investor has helped the local Chinese bank improve its financial performance. On the basis of a comprehensive review of the relevant literature, I first develop a theoretical model that describes the organizational mechanisms (pathways) through which foreign strategic investors can influence the local bank’s performance. Specifically, by participation in corporate governance, the foreign strategic investor can have a positive influence over the local bank’s strategy development, operational targets, incentive systems, and organizational culture, which consequently lead to improvements in the local banks operations and financial performance. I then use a case study method to substantiate the logic and the pathways of the model with the detailed information collected from the Shanghai Pudong Development Bank and Citi Bank strategic alliance. The results are consistent with the model’s descriptive validity.
ContributorsLiu, Xinyi (Author) / Pei, Ker-Wei (Thesis advisor) / Chen, Hong (Committee member) / Shen, Wei (Committee member) / Arizona State University (Publisher)
Created2015
161954-Thumbnail Image.png
Description
In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide

In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide (DMF) solvent. The MACE process achieves the high aspect ratio structure fabrication using the reaction between metal and wet chemical. The nanostructures are fabricated on Si surface for enhanced light management, but, without proper surface passivation those gains hardly impact the performance of the solar cell. The surface passivation of nanostructures is challenging, not only due to larger surface areas and aspect ratios, but also has a direct result of the nanofabrication processes. In this research, the surface passivation of silicon nanostructures is improved by modifying the silica nanosphere lithography (SNL) and the metal assisted chemical etching (MACE) processes, frequently used to fabricate nanostructures. The implementation of a protective silicon oxide layer is proposed prior to the lithography process to mitigate the impact of the plasma etching during the SNL. Additionally, several adhesion layers are studied, chromium (Cr), nickel (Ni) and titanium (Ti) with gold (Au), used in the MACE process. The metal contamination is one of main damage and Ti makes the mitigation of metal contamination. Finally, a new chemical etching step is introduced, using potassium hydroxide at room temperature, to smooth the surface of the nanostructures after the MACE process. This chemical treatment allows to improve passivation by surface area control and removing surface defects. In this research, I demonstrate the Aluminum Oxide (Al2O3) passivation on nanostructure using atomic layer deposition (ALD) process. 10nm of Al2O3 layer makes effective passivation on nanostructure with optimized post annealing in forming gas (N2/H2) environment. However, 10nm thickness is not suitable for hetero structure because of carrier transportation. For carrier transportation, ultrathin Al2O3 (≤ 1nm) layer is used for passivation, but effective passivation is not achieved because of insufficient hydrogen contents. This issue is solved to use additional ultrathin SiO2 (1nm) below Al2O3 layer and hydrogenation from doped a-Si:H. Moreover, the nanostructure is creased on gallium phosphide (GaP) by SNL and MACE process. The fabrication process is modified by control of metal layer and MACE solution.
ContributorsKim, Sangpyeong (Author) / Honsberg, Christiana (Thesis advisor) / Bowden, Stuart (Committee member) / Goryll, Michael (Committee member) / Augusto, Andre (Committee member) / Arizona State University (Publisher)
Created2021
156261-Thumbnail Image.png
Description
This study investigates the performance effects of cross-industry mergers and acquisitions (M&A) using a sample of firms listed in China’s Growth Entrepreses Market (GEM). Compared to firms listed in the Shanghai and Shenzhen Stock Exchanges, firms listed in the GEM are much smaller and tend to derive the majority of

This study investigates the performance effects of cross-industry mergers and acquisitions (M&A) using a sample of firms listed in China’s Growth Entrepreses Market (GEM). Compared to firms listed in the Shanghai and Shenzhen Stock Exchanges, firms listed in the GEM are much smaller and tend to derive the majority of their revenues from a single industry. I first analyze the motives for firms listed in the GEM to engage in M&As and propose a set of factors that may influence their likelihood of M&A activities. Using data on 55 cross-industry M&As between January 1, 2012 and December 31, 2016, I find that investor generally responded positively in short-term, as indicated by the positive accumulated abonormal returns over the first five trading days following the announcements. Meanwhile, I found no evidence that investors benefited from cross-industry M&As in long-term over three years after the event. Further analysis suggests that the short-term effects of cross-industry M&As by GEM listed firms were influenced by the target firm’s market valuation, whether the M&A was paid by cash, the amount of the payment, and the degree of difference between the acquiring firm’s and the target firm’s industries. These findings have important implications for the investors and senior executives of firms listed in the GEM.
ContributorsZhou, Wei (Author) / Shen, Wei (Thesis advisor) / Yu, Xiaoyun (Thesis advisor) / Jiang, Zhan (Committee member) / Arizona State University (Publisher)
Created2018
154420-Thumbnail Image.png
Description
This thesis aims to investigate the impacts of foreign banks’ management model on their degree of localization and operating efficiency. I decompose their management model into five major factors, including two formative factors and three reflective factors. The two formative factors are (1) strategic orientation and (2) target customers, and

This thesis aims to investigate the impacts of foreign banks’ management model on their degree of localization and operating efficiency. I decompose their management model into five major factors, including two formative factors and three reflective factors. The two formative factors are (1) strategic orientation and (2) target customers, and the three reflective factors are (1) top management team composition, (2) organizational structure, and (3) managerial authority and incentives. I propose that the formative factors influence foreign banks’ degree of localization, as demonstrated by the reflective factors, which subsequently influence foreign banks’ operating efficiency in China.

To test the above proposition, I conduct the empirical analysis in three steps. In the first step, I investigate foreign banks’ management model by surveying 13 major foreign banks locally incorporated in Mainland China. The results suggest that these 13 foreign banks can be categorized into three distinct groups based on their management model: intergrators, customer-followers, and parent-followers. The results also indicate that intergrators have the highest level of localization while parent-followers have the lowest level of localization.

In the second step, I conduct DEA (Data Envelope Analysis) and CAMEL (Capital Adequacy, Asset Quality, Management, Earnings, Liquidity Analysis) to assess the operating efficiency of these 13 foreign banks. The assessment is conducted in two ways: 1) the inter-group comparison between foreign banks and local Chinese banks; 2) the intra-group comparison between the three distinct groups of foreign banks identified in the first step. The results indicates that the principal factor driving the operating efficiency of both local Chinese banks and foreign banks is the comprehensive technical efficiency, which includes both the quality of management and the quality of technical elements. I also find the uptrend of technical efficiency of the integrators is more stable than that of the other two groups of foreign banks.

Finally, I integrate the results from step one and step two to assess the relevance between foreign banks’ localization level and operating efficiency. I find that foreign banks that score higher in localization tend to have a higher level of operating efficiency. Although this finding is not conclusive about the causal relationship between localization and operating efficiency, it nevertheless suggests that the management model of the higher performing integrators can serve as references for the other foreign banks attempting to enhance their localization and operating efficiency. I also discuss the future trends of development in the banking industry in China and what foreign banks can learn from local Chinese banks to improve their market positions.
ContributorsSun, Minjie (Author) / Shen, Wei (Thesis advisor) / Qian, Jun (Thesis advisor) / Pei, Ker-Wei (Committee member) / Arizona State University (Publisher)
Created2016
156540-Thumbnail Image.png
Description
This study investigates the impact of a specific organizational form – partnership – on employees’ awareness of risk control and job engagement in securities companies. Given that their organizational performance relies heavily on the performance of individual employees, it is critical for securities companies in China to adopt appropriate organizational

This study investigates the impact of a specific organizational form – partnership – on employees’ awareness of risk control and job engagement in securities companies. Given that their organizational performance relies heavily on the performance of individual employees, it is critical for securities companies in China to adopt appropriate organizational forms so that they can better captalize on their employees’ human capital to cope with the increasingly intense market competition. Partnership, as one of the few organizational forms, has been widely adopted in industries that rely on the performance of individuals, such as law, auditing, consulting, and investment banking, around the world. In the context of China’s emerging economy, it has also been adopted as an incentive system by market leaders across several industries, including Alibaba in online shopping, Vanke in real estate, and Fosun in investments. In contrast, partnership has not been adopted or implemented by securities companies in China as most of them are still state-owned enterprises.

Based on my review of the corporate governance literature and qualitative analysis of partnership adoption in China, I propose that partnership can help better alighn the interests of employees with owners in securities companies as well. Specifically, the prospect of becoming a partner in the future can improve employees’ awareness of risk control and increase their job engagement. Taking advantage of partnership adoption at a Chinese securities company as a natural field experienment, I surveyed its employees about their awareness of risk contrl and job dedication before and after the adoption. The results from 505 matched surveys showed an increase in the average scores of both awareness of risk control and job dedication after the company adopted partnership as a new organizational form. Findings of this study have important implications for organizational and incentive design for securities companies in China.
ContributorsSha, Changming (Author) / Shen, Wei (Thesis advisor) / Li, Feng (Thesis advisor) / Gu, Bin (Committee member) / Arizona State University (Publisher)
Created2018
155417-Thumbnail Image.png
Description
China's city commercial banks were reorganized by the urban credit cooperatives in the same city in the 1990s. Although they are allowed to open branches outside the registered city, the location and the number of their branches have been strictly restricted. It is fatal to them to increase the competitiveness

China's city commercial banks were reorganized by the urban credit cooperatives in the same city in the 1990s. Although they are allowed to open branches outside the registered city, the location and the number of their branches have been strictly restricted. It is fatal to them to increase the competitiveness of their branches. Based on the diversity theory and its mechanism, in this study I examined the impact of source diversity of the senior management in the branches of the city commercial bank on the branches’ productivity and their asset yield. Invoking the resource-based theory and the social capital framework, the source diversity lead to the organization resources diversity and the organization knowledge diversity. The results demonstrate that the source diversity contribute to the branches’ competitiveness advantage. Both internal trained personnel and external introduction personnel are important for the branches’ top management team. But one of the two kinds of personnel is more suitable to their middle management team.
ContributorsZhang, Xiande (Author) / Gu, Bin (Thesis advisor) / Wang, Tan (Thesis advisor) / Shen, Wei (Committee member) / Arizona State University (Publisher)
Created2017