This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 115
Filtering by

Clear all filters

151873-Thumbnail Image.png
Description
This qualitative, action research study examines how teacher-writers' identities are constructed through the practice of revision in an extra-curriculum writing group. The writing group was designed to support the teacher-writers as they revised classroom research projects for submission for a scholarly journal. Using discourse analysis, the researcher explores how the

This qualitative, action research study examines how teacher-writers' identities are constructed through the practice of revision in an extra-curriculum writing group. The writing group was designed to support the teacher-writers as they revised classroom research projects for submission for a scholarly journal. Using discourse analysis, the researcher explores how the teacher-writers' identities are constructed in the contested spaces of revision. This exploration focuses on contested issues that invariably emerge in a dynamic binary of reader/writer, issues of authority, ownership, and unstable reader and writer identities. By negotiating these contested spaces--these contact zones--the teacher-writers construct opportunities to flex their rhetorical agency. Through rhetorical agency, the teacher-writers shift their discoursal identities by discarding and acquiring a variety of discourses. As a result, the practice of revision constructs the teacher-writers identities as hybrid, as consisting of self and other.
ContributorsClark-Oates, Angela (Author) / Smith, Karen (Thesis advisor) / Roen, Duane (Thesis advisor) / Fischman, Gustavo (Committee member) / Early, Jessica (Committee member) / Arizona State University (Publisher)
Created2013
151682-Thumbnail Image.png
Description
Examining the elements of the hidden curriculum in theatre education allows theatre educators the opportunity to reflect on their own pedagogy and its effects on the learner. The hidden curriculum refers to the unspoken or implicit values, norms, and beliefs that are transmitted through tacit messages. When the hidden curriculum

Examining the elements of the hidden curriculum in theatre education allows theatre educators the opportunity to reflect on their own pedagogy and its effects on the learner. The hidden curriculum refers to the unspoken or implicit values, norms, and beliefs that are transmitted through tacit messages. When the hidden curriculum remains veiled, the impact on the learner's education and socialization process can perpetuate gender, race, and class inequalities. In order to understand how the hidden curriculum manifests itself in theatre classrooms, we have to look at schools as "agents of legitimation, organized to produce and reproduce the dominant categories, values, and social relationships necessary for the maintenance of the larger society" (Giroux, 1983, p. 72). This qualitative study examined the hidden curriculum in theatre at the secondary level and looked at theatre teachers' pedagogy in reproducing elements of the hidden curriculum. Interviews, naturalistic observation, and a researcher reflective journal were employed in the data collection process to better understand: a) the elements of hidden curriculum that appear in theatre education at the secondary level, b) how the pedagogical practices of theatre teachers support societal structures, and c) how the hidden curriculum in theatre reinforces gender, race, and social class distinctions. Data were then coded and analyzed to find emergent themes. Multiple theoretical perspectives serve as a conceptual framework for understanding the hidden curriculum, and provide a neglected perspective of the hidden curriculum in theatre education. The theatre classroom provides a unique space to view hidden curriculum and can be viewed as a unique agent of social change. Themes related to the first research question emerged as: a) privileges for older students, b) school rules, c) respect for authority, d) acceptance of repetitive tasks, and c) punctuality. Themes related to the second research question emerged as: a) practices, b) procedures, c) rules, d) relationships, and e) structures. Finally, themes related to the third question emerged as: a) reinforcement of social inequality, b) perpetuation of class structure, and c) acceptance of social destiny. The discussion looks at the functions of theatre pedagogy in the reproduction of class, inequality, and institutionalized cultural norms.
ContributorsHines, Angela R (Author) / Saldana, Johnny (Thesis advisor) / Malewski, Erik (Committee member) / Fischman, Gustavo (Committee member) / Arizona State University (Publisher)
Created2013
152224-Thumbnail Image.png
Description
In this dissertation I attempt to find elements of education and curricular perspective in the Qur'an. I argue that there is little research in the field of curriculum instruction that discusses the Qur'an's educational aspects and, as a result, much ignorance of the Qur'an's material that deals with education and

In this dissertation I attempt to find elements of education and curricular perspective in the Qur'an. I argue that there is little research in the field of curriculum instruction that discusses the Qur'an's educational aspects and, as a result, much ignorance of the Qur'an's material that deals with education and curricular perspective in the Qur'an. Researchers may find many materials that deal with reading, memorizing, and reciting the Qur'an, along with references that deal with science and math in the Qur'an. Therefore, this dissertation answers the question: What curriculum exists within the Quran? This dissertation is divided into five chapters exploring various aspects of the curriculum. The word "curriculum" is used in one chapter to mean developing the person as a whole in all aspects of life whether spiritual, social, or mental while in the other chapter curriculum is used to refer to methods of instruction. I concluded that curriculum in the Qur'an uses different methods of instructions to develop the individual as a whole in all aspects of life while granting freedom of choice.
ContributorsRisha, Sarah (Author) / Margolis, Eric (Thesis advisor) / Fischman, Gustavo (Committee member) / Ali, Souad (Committee member) / Arizona State University (Publisher)
Created2013
152194-Thumbnail Image.png
Description
Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear

Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.
ContributorsSantucci, Robert (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioðlu, Cihan (Committee member) / Bakkaloglu, Bertan (Committee member) / Tsakalis, Kostas (Committee member) / Arizona State University (Publisher)
Created2013
152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151670-Thumbnail Image.png
Description
Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory

Legislative changes and discussions about the United States falling further and further behind other nations in science, technology, engineering, and math (STEM) achievement are growing. As they grow, STEM instruction in elementary school has earned its place as a national area of interest in education. In the case of Ivory School District, teachers are being asked to radically change their daily practices by consistently implementing inquiry-based STEM experiences in their classrooms. As such, teachers are being asked to scale a divide between the district expectations and their knowledge and experience. Many fourth grade educators are teachers who have been trained as generalists and typically do not have specific background or experience in the philosophy, instructional strategies, or content associated with STEM. Using a prototype approach, this study aims to understand how such teachers conceptualize STEM instruction and the relationship between their experience and conceptions.
ContributorsKenney, Meghan (Author) / Fischman, Gustavo (Thesis advisor) / Powers, Jeanne (Committee member) / Rasch, Katherine D (Committee member) / Arizona State University (Publisher)
Created2013
151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013