This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 147
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151881-Thumbnail Image.png
Description
In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and

In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and composer devoted to musical modernism, he had established himself as a writer of film music and Kampflieder, fighting songs, for the European workers' movement. After two visits of the United States in the mid-1930s, Eisler settled in America where he spent a decade (1938-1948), composed a considerable number of musical works, including important film scores, instrumental music and songs, and, in collaboration with Theodor W. Adorno, penned the influential treatise Composing for the Films. Yet despite his substantial contributions to American culture American scholarship on Eisler has remained sparse, perhaps due to his reputation as the "Karl Marx in Music." In this study I examine Eisler's American exile and argue that Eisler, through his roles as a musician and a teacher, actively sought to enrich American culture. I will present background for his exile years, a detailed overview of his American career as well as analyses and close readings of several of his American works, including three of his American film scores, Pete Roleum and His Cousins (1939), Hangmen Also Die (1943), and None But the Lonely Heart (1944), and the String Quartet (1940), Third Piano Sonata (1943), Woodbury Liederbüchlein (1941), and Hollywood Songbook (1942-7). This thesis builds upon unpublished correspondence and documents available only in special collections at the University of Southern California (USC), as well as film scores in archives at USC and the University of California, Los Angeles. It also draws on Eisler studies by such European scholars as Albrecht Betz, Jürgen Schebera, and Horst Weber, as well as on research of film music scholars Sally Bick and Claudia Gorbman. As there is little written on the particulars of Eisler's American years, this thesis presents new facts and new perspectives and aims at a better understanding of the artistic achievements of this composer.
ContributorsBoyd, Caleb (Author) / Feisst, Sabine (Thesis advisor) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2013
Description
CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some

CYOA is a prototype of an iPhone application that produces a single, generative, musical work. This document details some of the thoughts and practices that informed its design, and specifically addresses the overlap between application structure and musical form. The concept of composed instruments is introduced and briefly discussed, some features of video game design that relate to this project are considered, and some specifics of hardware implementation are addressed.
ContributorsPeterson, Julian (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Levy, Benjamin (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
Description
Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published.

Johann Sebastian Bach's violin Sonata I in G minor, BWV 1001, is a significant and widely performed work that exists in numerous editions and also as transcriptions or arrangements for various other instruments, including the guitar. A pedagogical guitar performance edition of this sonata, however, has yet to be published. Therefore, the core of my project is a transcription and pedagogical edition of this work for guitar. The transcription is supported by an analysis, performance and pedagogical practice guide, and a recording. The analysis and graphing of phrase structures illuminate Bach's use of compositional devices and the architectural function of the work's harmonic gravities. They are intended to guide performers in their assessment of the surface ornamentation and suggest a reduction toward its fundamental purpose. The end result is a clarification of the piece through the organization of phrase structures and the prioritization of harmonic tensions and resolutions. The compiling process is intended to assist the performer in "seeing the forest from the trees." Based on markings from Bach's original autograph score, the transcription considers fingering ease on the guitar that is critical to render the music to a functional and practical level. The goal is to preserve the composer's indications to the highest degree possible while still adhering to the technical confines that allow for actual execution on the guitar. The performance guide provides suggestions for articulation, phrasing, ornamentation, and other interpretive decisions. Considering the limitations of the guitar, the author's suggestions are grounded in various concepts of historically informed performance, and also relate to today's early-music sensibilities. The pedagogical practice guide demonstrates procedures to break down and assimilate the musical material as applied toward the various elements of guitar technique and practice. The CD recording is intended to demonstrate the transcription and the connection to the concepts discussed. It is hoped that this pedagogical edition will provide a rational that serves to support technical decisions within the transcription and generate meaningful interpretive realizations based on principles of historically informed performance.
ContributorsFelice, Joseph Philip (Author) / Koonce, Frank (Thesis advisor) / Feisst, Sabine (Committee member) / Swartz, Jonathan (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
151994-Thumbnail Image.png
Description
Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly

Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.
ContributorsHe, Miao (Author) / Zhang, Junshan (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Hedman, Kory (Committee member) / Si, Jennie (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151778-Thumbnail Image.png
Description
This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These

This project features three new pieces for clarinet commissioned from three different composers. Two are for unaccompanied clarinet and one is for clarinet, bass clarinet, and laptop. These pieces are Storm's a Comin' by Chris Burton, Light and Shadows by Theresa Martin, and My Own Agenda by Robbie McCarthy. These three solos challenge the performer in various ways including complex rhythm, use of extended techniques such as growling, glissando, and multiphonics, and the incorporation of technology into a live performance. In addition to background information, a performance practice guide has also been included for each of the pieces. This guide provides recommendations and suggestions for future performers wishing to study and perform these works. Also included are transcripts of interviews done with each of the composers as well as full scores for each of the pieces. Accompanying this document are recordings of each of the three pieces, performed by the author.
ContributorsVaughan, Melissa Lynn (Author) / Spring, Robert (Thesis advisor) / Micklich, Albie (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151795-Thumbnail Image.png
Description
Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to

Three Meditations on the Philosophy of Boethius is a musical piece for guitar, piano interior, and computer. Each of the three movements, or meditations, reflects one level of music according to the medieval philosopher Boethius: Musica Mundana, Musica Humana, and Musica Instrumentalis. From spatial aspects, through the human element, to letting sound evolve freely, different movements revolve around different sounds and sound producing techniques.
ContributorsDori, Gil (Contributor) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Feisst, Sabine (Committee member) / Arizona State University (Publisher)
Created2013
151322-Thumbnail Image.png
Description
With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.
ContributorsEftekharnejad, Sara (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Si, Jennie (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
151276-Thumbnail Image.png
Description
This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. The angular position dependency of the rotor shaft is retained in the inductance matrix associated with the model to accurately capture the dynamics of the motor loads. The equivalent circuit of the new model is interfaced with the electric network in the EMTP. The dynamic response of the motor when subjected to faults at different points on voltage waveform has been studied using the EMTP simulator. The mechanism and the impacts of motor stalling need to be explored with multiple units of the detailed model connected to a realistic three-phase distribution system. The model developed can be utilized to assess and improve the product design of compressor motors by air-conditioner manufacturers. Another critical application of the model would be to examine the impacts of asymmetric transmission faults on distribution systems to investigate and develop mitigation measures for the FIDVR problem.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012