This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 31 - 40 of 107
Filtering by

Clear all filters

150125-Thumbnail Image.png
Description
Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such

Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as "virtual sensing" data for detection and prognosis. The current research is part of an ongoing multidisciplinary effort to develop an integrated SHM framework for metallic aerospace components. In this thesis a multiscale model has been developed by bridging the relevant length scales, micro, meso and macro (or structural scale). Micro structural representations obtained from material characterization studies are used to define the length scales and to capture the size and orientation of the grains at the micro level. Parametric studies are conducted to estimate material parameters used in this constitutive model. Numerical and experimental simulations are performed to investigate the effects of Representative Volume Element (RVE) size, defect area fraction and distribution. A multiscale damage criterion accounting for crystal orientation effect is developed. This criterion is applied for fatigue crack initial stage prediction. A damage evolution rule based on strain energy density is modified to incorporate crystal plasticity at the microscale (local). Optimization approaches are used to calculate global damage index which is used for the RVE failure prediciton. Potential cracking directions are provided from the damage criterion simultaneously. A wave propagation model is incorporated with the damage model to detect changes in sensing signals due to plastic deformation and damage growth.
ContributorsLuo, Chuntao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150098-Thumbnail Image.png
Description
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many

Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
ContributorsYekani Fard, Masoud (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
149742-Thumbnail Image.png
Description
Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive

Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive and substrate. These stresses are relaxed through bowing of the bonded system (substrate-adhesive-carrier), which causes wafer handling problems, or through delamination of substrate from rigid carrier. Another challenge inherent to flexible plastic substrates and linked to stress is their dimensional instability, which may manifest itself in irreversible deformation upon heating and cooling cycles. Dimensional stability is critical to ensure precise registration of different layers during photolithography. The global objective of this work is to determine comprehensive experimental characterization and develop underlying fundamental engineering concept that could enable widespread adoption and scale-up of temporary bonding processing protocols for flexible microelectronics manufacturing. A series of carriers with different coefficient of thermal expansion (CTE), modulus and thickness were investigated to correlate the thermo-mechanical properties of carrier with deformation behavior of bonded systems. The observed magnitude of system bow scaled with properties of carriers according to well-established Stoney's equation. In addition, rheology of adhesive impacted the deformation of bonded system. In particular, distortion-bowing behavior correlated directly with the relative loss factor of adhesive and flexible plastic substrate. Higher loss factor of adhesive compared to that of substrate allowed the stress to be relaxed with less bow, but led to significantly greater dimensional distortion. Conversely, lower loss factor of adhesive allowed less distortion but led to larger wafer bow. A finite element model using ANSYS was developed to predict the trend in bow-distortion of bonded systems as a function of the viscoelastic properties of adhesive. Inclusion of the viscoelasticity of flexible plastic substrate itself was critical to achieving good agreement between simulation and experiment. Simulation results showed that there is a limited range within which tuning the rheology of adhesive can control the stress-distortion. Therefore, this model can aid in design of new adhesive formulations compatible with different processing requirements of various flexible microelectronics applications.
ContributorsHaq, Jesmin (Author) / Raupp, Gregory B (Thesis advisor) / Vogt, Bryan D (Thesis advisor) / Dai, Lenore (Committee member) / Loy, Douglas (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
150433-Thumbnail Image.png
Description

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials.

ContributorsMorris, Derek (Author) / Kaloush, Kamil (Thesis advisor) / Mobasher, Barzin (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2011
150448-Thumbnail Image.png
Description
Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility

Concrete design has recently seen a shift in focus from prescriptive specifications to performance based specifications with increasing demands for sustainable products. Fiber reinforced composites (FRC) provides unique properties to a material that is very weak under tensile loads. The addition of fibers to a concrete mix provides additional ductility and reduces the propagation of cracks in the concrete structure. It is the fibers that bridge the crack and dissipate the incurred strain energy in the form of a fiber-pullout mechanism. The addition of fibers plays an important role in tunnel lining systems and in reducing shrinkage cracking in high performance concretes. The interest in most design situations is the load where cracking first takes place. Typically the post crack response will exhibit either a load bearing increase as deflection continues, or a load bearing decrease as deflection continues. These behaviors are referred to as strain hardening and strain softening respectively. A strain softening or hardening response is used to model the behavior of different types of fiber reinforced concrete and simulate the experimental flexural response. Closed form equations for moment-curvature response of rectangular beams under four and three point loading in conjunction with crack localization rules are utilized. As a result, the stress distribution that considers a shifting neutral axis can be simulated which provides a more accurate representation of the residual strength of the fiber cement composites. The use of typical residual strength parameters by standards organizations ASTM, JCI and RILEM are examined to be incorrect in their linear elastic assumption of FRC behavior. Finite element models were implemented to study the effects and simulate the load defection response of fiber reinforced shotcrete round discrete panels (RDP's) tested in accordance with ASTM C-1550. The back-calculated material properties from the flexural tests were used as a basis for the FEM material models. Further development of FEM beams were also used to provide additional comparisons in residual strengths of early age samples. A correlation between the RDP and flexural beam test was generated based a relationship between normalized toughness with respect to the newly generated crack surfaces. A set of design equations are proposed using a residual strength correction factor generated by the model and produce the design moment based on specified concrete slab geometry.
ContributorsBarsby, Christopher (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2011
151096-Thumbnail Image.png
Description
Plasmon resonance in nanoscale metallic structures has shown its ability to concentrate electromagnetic energy into sub-wavelength volumes. Metal nanostructures exhibit a high extinction coefficient in the visible and near infrared spectrum due to their large absorption and scattering cross sections corresponding to their surface plasmon resonance. Hence, they can serve

Plasmon resonance in nanoscale metallic structures has shown its ability to concentrate electromagnetic energy into sub-wavelength volumes. Metal nanostructures exhibit a high extinction coefficient in the visible and near infrared spectrum due to their large absorption and scattering cross sections corresponding to their surface plasmon resonance. Hence, they can serve as an attractive candidate for solar energy conversion. Recent papers have showed that dielectric core/metallic shell nanoparticles yielded a plasmon resonance wavelength tunable from visible to infrared by changing the ratio of core radius to the total radius. Therefore it is interesting to develop a dispersion of core-shell multifunctional nanoparticles capable of dynamically changing their volume ratio and thus their spectral radiative properties. Nanoparticle suspensions (nanofluids) are known to offer a variety of benefits for thermal transport and energy conversion. Nanofluids have been proven to increase the efficiency of the photo-thermal energy conversion process in direct solar absorption collectors (DAC). Combining these two cutting-edge technologies enables the use of core-shell nanoparticles to control the spectral and radiative properties of plasmonic nanofluids in order to efficiently harvest and convert solar energy. Plasmonic nanofluids that have strong energy concentrating capacity and spectral selectivity can be used in many high-temperature energy systems where radiative heat transport is essential. In this thesis,the surface plasmon resonance effect and the wavelength tuning ranges for different metallic shell nanoparticles are investigated, the solar-weighted efficiencies of corresponding core-shell nanoparticle suspensions are explored, and a quantitative study of core-shell nanoparticle suspensions in a DAC system is provided. Using core-shell nanoparticle dispersions, it is possible to create efficient spectral solar absorption fluids and design materials for applications which require variable spectral absorption or scattering.
ContributorsLv, Wei (Author) / Phelan, Patrick E (Thesis advisor) / Dai, Lenore (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2012
151118-Thumbnail Image.png
Description
Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2)

Over the past years, an interest has arisen in resolving two major issues: increased carbon dioxide (CO2) emissions and depleting energy resources. A convenient solution would be a process that could simultaneously use CO2 while producing energy. The photocatalytic reduction of CO2 to fuels over the photocatalyst titanium dioxide (TiO2) is such a process. However, this process is presently inefficient and unsuitable for industrial applications. A step toward making this process more effective is to alter TiO2 based photocatalysts to improve their activity. The interactions of CO2 with oxygen-deficient and unmodified (210) surfaces of brookite TiO2 were studied using first-principle calculations on cluster systems. Charge and spin density analyses were implemented to determine if charge transfer to the CO2 molecule occurred and whether this charge transfer was comparable to that seen with the oxygen-deficient and unmodified anatase TiO2 (101) surfaces. Although the unmodified brookite (210) surface provided energetically similar CO2 interactions as compared to the unmodified anatase (101) surface, the unmodified brookite surface had negligible charge transfer to the CO2 molecule. This result suggests that unmodified brookite is not a suitable catalyst for the reduction of CO2. However, the results also suggest that modification of the brookite surface through the creation of oxygen vacancies may lead to enhancements in CO2 reduction. The computational results were supported with laboratory data for CO2 interaction with perfect brookite and oxygen-deficient brookite. The laboratory data, generated using diffuse reflectance Fourier transform infrared spectroscopy, confirms the presence of CO2- on only the oxygen-deficient brookite. Additional computational work was performed on I-doped anatase (101) and I-doped brookite (210) surface clusters. Adsorption energies and charge and spin density analyses were performed and the results compared. While charge and spin density analyses showed minute charge transfer to CO2, the calculated adsorption energies demonstrated an increased affinity for CO2adsorption onto the I-doped brookite surface. Gathering the results from all calculations, the computational work on oxygen-deficient, I-doped, and unmodified anatase and brookite surface structures suggest that brookite TiO2 is a potential photocatalysts for CO2 photoreduction.
ContributorsRodriguez, Monique M (Author) / Andino, Jean M (Thesis advisor) / Nielsen, David R (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2012
151022-Thumbnail Image.png
Description
Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties of these soft materials are poor and the applications have been limited due to their weak compatibility with functional materials.

Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties of these soft materials are poor and the applications have been limited due to their weak compatibility with functional materials. Therefore, the integration of stimuli responsive polymers with other functional materials like Silicon is strongly demanded. Here, we present successful strategies to integrate environmentally sensitive hydrogels with Silicon, a typical high-performance electronic material, and demonstrate the intelligent and stretchable capability of this system. The goal of this project is to develop integrated smart devices comprising of soft stimuli responsive polymeric-substrates with conventional semiconductor materials such as Silicon, which can respond to various external stimuli like pH, temperature, light etc. Specifically, these devices combine the merits of high quality crystalline semiconductor materials and the mechanical flexibility/stretchability of polymers. Our innovative system consists of ultra-thin Silicon ribbons bonded to an intelligently stretchable substrate which is intended to interpret and exert environmental signals and provide the desired stress relief. As one of the specific examples, we chose as a substrate the standard thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel with fast response and large deformation. In order to make the surface of the hydrogel waterproof and smooth for high-quality Silicon transfer, we introduced an intermediate layer of poly(dimethylsiloxane) (PDMS) between the substrate and the Silicon ribbons. The optical microscope results have shown that the system enables stiff Silicon ribbons to become adaptive and drivable by the soft environmentally sensitive substrate. Furthermore, we pioneered the development of complex geometries with two different methods: one is using stereolithography to electronically control the patterns and build up their profiles layer by layer; the other is integrating different multifunctional polymers. In this report, we have designed a bilayer structure comprising of a PNIPAAm hydrogel and a hybrid hydrogel of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA). Typical variable curvatures can be obtained by the hydrogels with different dimensional expansion. These structures hold interesting possibilities in the design of electronic devices with tunable curvature.
ContributorsPan, Yuping (Author) / Dai, Lenore (Thesis advisor) / Jiang, Hanqing (Thesis advisor) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2012
150592-Thumbnail Image.png
Description
Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to

Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to superior optical property in the near infrared (NIR) window. Light absorbed by the nanorod can be dissipated as heat efficiently or re-emitted by the particle. However, the limitations for clinical translation of gold nanorods include low yields, poor stability, depth-restricted imaging, and resistance of cancer cells to hyperthermia, are severe. A novel high-throughput synthesis method was employed to significantly increase in yields of solid and porous gold nanorods/wires. Stable functional nanoassemblies and nanomaterials were generated by interfacing gold nanorods with a variety of polymeric and polypeptide-based coatings, resulting in unique properties of polymer-gold nanorod assemblies and composites. Here the use of these modified gold nanorods in a variety of applications including optical sensors, cancer therapeutics, and nanobiomaterials were described.
ContributorsHuang, Huang-Chiao (Author) / Rege, Kaushal (Thesis advisor) / Sierks, Michael (Committee member) / Dai, Lenore (Committee member) / Ramakrishna, B (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2012